首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
We theoretically investigate light trapping with disordered 1D photonic structures in thin‐film crystalline silicon solar cells. The disorder is modelled in a finite‐size supercell, which allows the use of rigorous coupled‐wave analysis to calculate the optical properties of the devices and the short‐circuit current density Jsc. The role of the Fourier transform of the photonic pattern in the light trapping is investigated, and the optimal correlation between size and position disorder is found. This result is used to optimize the disorder in a more effective way, using a single parameter. We find that a Gaussian disorder always enhances the device performance with respect to the best ordered configuration. To properly quantify this improvement, we calculate the Lambertian limit to the absorption enhancement for 1D photonic structures in crystalline silicon, following the previous work for the 2D case [M.A. Green, Progr. Photovolt: Res. Appl. 2002; 10 (4), pp. 235–241]. We find that disorder optimization can give a relevant contribution to approach this limit. Finally, we propose an optimal disordered 2D configuration and estimate the maximum short‐circuit current that can be achieved, potentially leading to efficiencies that are comparable with the values of other thin‐film solar cell technologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Four different categories of rough reflecting substrates as well as a single periodic grating are incorporated and tested within n‐i‐p type amorphous silicon (a‐Si:H) solar cells. Each category is characterised by its own texture shape; dimensions were varied within the categories. Compared to flat reflecting substrates, gains in short‐circuit current density (Jsc) up to 20% have been obtained on rough reflecting plastic substrates. As long as (1) the characteristic dimensions of the textures are lower than the involved light wavelengths, (2) the textures do not present any defects i.e. as long as they do not have large craters or bumps spread over the surface, the root mean square roughness (δRMS) as well as the ratio of average feature height to average period can be used to evaluate the gain in Jsc; if each category of randomly textured substrates is considered separately, the haze factor can be used to estimate δRMS and thereby the gains in Jsc. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We have developed a new light‐trapping scheme for a thin‐film Si stacked module (Si HYBRID PULS module), where a (a‐Si:H/transparent interlayer/microcrystalline Si) thin‐film was integrated into a large‐area solar cell module. An initial aperture efficiency of 13·1% has been achieved for a 910 × 455 mm Si HYBRID PLUS module, which was independently confirmed by AIST. This is the first report of the independently confirmed efficiency of a large‐area thin‐film Si module with an interlayer. The 19% increase of short‐circuit current of this module was obtained by the introduction of a transparent interlayer that caused internal light‐trapping. A mini‐module was shown to exhibit a stabilized efficiency of 12%. Outdoor performance of a Si HYBRID (a‐Si:H / micro‐crystalline Si stacked) solar cell module has been investigated for over 4 years with two different kinds of module (top and bottom cell limited, respectively). The HYBRID modules limited by the top cell have exhibited a more efficient performance than the modules limited by the bottom cell, in natural sunlight at noon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Light trapping and photon management in honeycomb‐textured microcrystalline silicon solar cells are investigated experimentally and by modeling of the manufacturing process and the optical wave propagation. The solar cells on honeycomb‐textured substrates exhibit short circuit current densities exceeding 30 mA/cm2 and energy conversion efficiencies of up to 11.0%. By controlling the fabrication process, the period and height of the honeycomb‐textured substrates are varied. The influence of the honeycomb substrate morphology on the interfaces of the individual solar cell layers and the quantum efficiency is determined. The optical wave propagation is calculated using 3D finite difference time domain simulations. A very good agreement between the optical simulation and experimental results is obtained. Strategies are discussed on how to increase the short circuit current density beyond 30 mA/cm2. In particular, the influence of plasmonic losses of the textured silver (Ag) reflector on the short circuit current and quantum efficiency of the solar cell is discussed. Finally, solar cell structures with reduced plasmonic losses are proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
To further increase the efficiency of multijunction thin‐film silicon (TF‐Si) solar cells, it is crucial for the front electrode to have a good transparency and conduction, to provide efficient light trapping for each subcell, and to ensure a suitable morphology for the growth of high‐quality silicon layers. Here, we present the implementation of highly transparent modulated surface textured (MST) front electrodes as light‐trapping structures in multijunction TF‐Si solar cells. The MST substrates comprise a micro‐textured glass, a thin layer of hydrogenated indium oxide (IOH), and a sub‐micron nano‐textured ZnO layer grown by low‐pressure chemical vapor deposition (LPCVD ZnO). The bilayer IOH/LPCVD ZnO stack guarantees efficient light in‐coupling and light trapping for the top amorphous silicon (a‐Si:H) solar cell while minimizing the parasitic absorption losses. The crater‐shaped micro‐textured glass provides both efficient light trapping in the red and infrared wavelength range and a suitable morphology for the growth of high‐quality nanocrystalline silicon (nc‐Si:H) layers. Thanks to the efficient light trapping for the individual subcells and suitable morphology for the growth of high‐quality silicon layers, multijunction solar cells deposited on MST substrates have a higher efficiency than those on single‐textured state‐of‐the‐art LPCVD ZnO substrates. Efficiencies of 14.8% (initial) and 12.5% (stable) have been achieved for a‐Si:H/nc‐Si:H tandem solar cells with the MST front electrode, surpassing efficiencies obtained on state‐of‐the‐art LPCVD ZnO, thereby highlighting the high potential of MST front electrodes for high‐efficiency multijunction solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
As an alternative to randomly textured transparent conductive oxides as front contact for thin‐film silicon solar cells the application of transparent grating couplers was studied. The grating couplers were prepared by sputtering of aluminium‐doped zinc oxide (ZnO) on glass substrate, a photolithography and a lift‐off process and were used as periodically textured substrates. The period size and groove depth of these transparent gratings were tuned independently from each other and varied between 1 and 4 μm and 100–600 nm. The optical properties of rectangular‐shaped gratings and the opto‐electronic behaviour of amorphous and microcrystalline silicon solar cells with integrated grating couplers as a function of the grating parameters (period size P and groove depth hg) are presented. The optical properties of the gratings are discussed with respect to randomly textured substrates and the achieved solar cell results are compared with the opto‐electronic properties of solar cells deposited on untextured (flat) and randomly textured substrates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Boron‐doped hydrogenated silicon carbide alloys containing silicon nanocrystallites (p‐nc‐SiC:H) were prepared using a plasma‐enhanced chemical vapor deposition system with a mixture of CH4, SiH4, B2H6 and H2 gases. The influence of hydrogen dilution on the material properties of the p‐nc‐SiC:H films was investigated, and their roles as window layers in hydrogenated nanocrystalline silicon (nc‐Si:H) solar cells were examined. By increasing the RH (H2/SiH4) ratio from 90 to 220, the Si―C bond density in the p‐nc‐SiC:H films increased from 5.20 × 1019 to 7.07 × 1019/cm3, resulting in a significant increase of the bandgap from 2.09 to 2.23 eV in comparison with the bandgap of 1.95 eV for p‐nc‐Si:H films. For the films deposited at a high RH ratio, the Si nanocrystallites with a size of 3–15 nm were formed in the amorphous SiC:H matrix. The Si nanocrystallites played an important role in the enhancement of vertical charge transport in the p‐nc‐SiC:H films, which was verified by conductive atomic force microscopy measurements. When the p‐nc‐SiC:H films deposited at RH = 220 were applied in the nc‐Si:H solar cells, a high conversion efficiency of 8.26% (Voc = 0.53 V, Jsc = 23.98 mA/cm2 and FF = 0.65) was obtained compared to 6.36% (Voc = 0.44 V, Jsc = 21.90 mA/cm2 and FF = 0.66) of the solar cells with reference p‐nc‐Si:H films. Further enhancement in the cell performance was achieved using p‐nc‐SiC:H bilayers consisting of highly doped upper layers and low‐level doped bottom layers, which led to the increased conversion efficiency of 9.03%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, we present a new light absorption enhancement method for p‐i‐n thin film silicon solar cells using pyramidal surface structures, larger than the wavelength of visible light. Calculations show a maximum possible current enhancement of 45% compared with cells on a flat substrate. We deposited amorphous silicon (a‐Si) thin film solar cells directly onto periodically pyramidal‐structured polycarbonate (PC) substrates, which show a significant increase (30%) in short‐circuit current over reference cells deposited on flat glass substrates. The current of the cells on our pyramidal structures on PC is only slightly lower than that of cells on Asahi U‐type TCO glass (Asahi Glass Co., Tokyo, Japan), but suffer from a somewhat lower open circuit voltage and fill factor. Because the used substrates have a locally flat surface area due to the fabrication process, we believe that the current enhancement in the cells on structured PC can be increased using larger or more closely spaced pyramids, which can have a smaller flat surface area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of grating couplers on the optical properties of silicon thin‐film solar cells was studied by a comparison of experimental results with numerical simulations. The thin‐film solar cells studied are based on microcrystalline silicon (μc‐Si:H) absorber layers of thickness in the micrometer range. To investigate the light propagation in these cells, especially in the red wavelength region, three‐dimensional power loss profiles are simulated. The influence of different grating parametres—such as period size, groove height, and shape of the grating—was studied to gain more insight into the light propagation within thin‐film silicon solar cells and to determine an optimized light trapping scheme. The effect of the TCO front and TCO back side layer thickness was investigated. The calculated quantum efficiencies and short‐circuit current densities are in good agreement with the experimental data. The simulations predict further optimization criteria. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Si thin‐film solar cells are suitable to the sunbelt region due to a low temperature coefficient and to building integrated photovoltaics owing to flexible size, easily controllable transmittance, and an aesthetic design. Nevertheless, the application is limited until now due to their low conversion efficiency. We have developed a triple junction cell (a‐Si:H/a‐SiGe:H/µc‐Si:H) providing efficient light utilization. For the high efficiency, we have focused on the smoothing of high haze TCO, a low absorption window layer, a low refractive index interlayer, uniformity control of the thickness and crystalline volume fraction in the microcrystalline silicon layer, and a low absorption back reflector. Through these activities, we have achieved a world record of 13.4% stabilized efficiency in the small size cell (1 cm2) and 10.5% stabilized efficiency in the large area module (1.1 × 1.3 m2), certificated by the National Renewable Energy Laboratory and Advanced Industrial Science and Technology, respectively. This result was presented in solar cell efficiency tables (Version 41). At this moment, we have increased a stabilized efficiency of 11.2% (Output power 160 W) in the large area module. We will report on the advanced materials in detail for high efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Dielectric films with anti‐reflective sub‐wavelength structures are applied to thin‐film silicon solar cells to improve the light incoupling at the front surface. It is verified that modification of the refractive index of the incident medium using dielectric films with sub‐wavelength structures is beneficial to reduce the average reflectivity of Si solar cells with an anti‐reflective coating based on optical interference. It is also shown that the sub‐wavelength structure must be combined with a proper light‐trapping texture to enhance the absorption within thin‐film silicon solar cells. The effectiveness of dielectric films with sub‐wavelength structures is demonstrated by an increase of the short‐circuit current density of a microcrystalline silicon cell from 29.1 to 30.4 mA/cm2 in a designated area of 1 cm2. The optical interplay between the dielectric films and the light‐trapping textures is also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we present a technology for a high precision nanostructure replication process based on ultraviolet nanoimprint lithography for the application in the field of thin‐film photovoltaics. The potential of the technology is demonstrated by the fabrication of microcrystalline silicon thin‐film prototype solar cells. The high accuracy replication of random microstructures made from sputtered and etched ZnO:Al, used to scatter the incident light in thin solar cells, is shown by local topography investigations of the same 7.5 × 7.5 µm2 area on the master and the replica. Different types of imprint resists and imprint moulds were investigated to find the optimal, high precision replication technology. Two types of thin‐film silicon solar cells, in p‐i‐n and n‐i‐p configuration, were fabricated to study the potential of the imprint technology for different applications. It is shown that solar cells deposited on an imprinted glass hold similar performances compared with reference solar cells fabricated with a standard process on textured ZnO:Al. Thus, it is demonstrated that the replication of light scattering structures by using an imprint process is an attractive method to decouple the scattering properties from the layer forming the electrical front contact. Because a simple and cheap high throughput process is used, this study additionally proves the relevance for the industrial mass production in the field of photovoltaics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Substrate configuration allows for the deposition of thin film silicon (Si) solar cells on non‐transparent substrates such as plastic sheets or metallic foils. In this work, we develop processes compatible with low Tg plastics. The amorphous Si (a‐Si:H) and microcrystalline Si (µc‐Si:H) films are deposited by plasma enhanced chemical vapour deposition, at very high excitation frequencies (VHF‐PECVD). We investigate the optical behaviour of single and triple junction devices prepared with different back and front contacts. The back contact consists either of a 2D periodic grid with moderate slope, or of low pressure CVD (LP‐CVD) ZnO with random pyramids of various sizes. The front contacts are either a 70 nm thick, nominally flat ITO or a rough 2 µm thick LP‐CVD ZnO. We observe that, for a‐Si:H, the cell performance depends critically on the combination of thin flat or thick rough front TCOs and the back contact. Indeed, for a‐Si:H, a thick LP‐CVD ZnO front contact provides more light trapping on the 2D periodic substrate. Then, we investigate the influence of the thick and thin TCOs in conjunction with thick absorbers (µc‐Si:H). Because of the different nature of the optical systems (thick against thin absorber layer), the antireflection effect of ITO becomes more effective and the structure with the flat TCO provides as much light trapping as the rough LP‐CVD ZnO. Finally, the conformality of the layers is investigated and guidelines are given to understand the effectiveness of the light trapping in devices deposited on periodic gratings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we present a novel design of a surface nanostructure that suppresses the reflectivity and provides forward diffraction for light trapping. The structure under study comprises periodic nanoislands fabricated using self‐assembly polystyrene spheres, which are applicable to large‐area fabrication. We also show preliminary fabrication results of the proposed structure. The periodic nanoislands reduce the reflectivity through gradient effective refractive indices and enhance light trapping through diffraction in a periodic structure. We first systematically study the antireflection and light trapping effects using a rigorous coupled‐wave analysis and then calculate the short‐circuit current density of a 2‐μm‐thick crystalline silicon with periodic nanoislands and an aluminum back reflector. The optimum short‐circuit current density with periodic nanoislands achieves 25 mA/cm2 theoretically, which shows a 76.9% enhancement compared with that of bare silicon. Moreover, the structure also provides superior photocurrent densities at large angles of incidence, compared with conventional antireflection coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We present an interdigitated back‐contact silicon heterojunction system designed for liquid‐phase crystallized thin‐film (~10 µm) silicon on glass. The preparation of the interdigitated emitter (a‐Si:H(p)) and absorber (a‐Si:H(n)) contact layers relies on the etch selectivity of doped amorphous silicon layers in alkaline solutions. The etch rates of a‐Si:H(n) and a‐Si:H(p) in 0.6% NaOH were determined and interdigitated back‐contact silicon heterojunction solar cells with two different metallizations, namely Al and ITO/Ag electrodes, were evaluated regarding electrical and optical properties. An additional random pyramid texture on the back side provides short‐circuit current density (jSC) of up to 30.3 mA/cm2 using the ITO/Ag metallization. The maximum efficiency of 10.5% is mainly limited by a low of fill factor of 57%. However, the high jSC, as well as VOC values of 633 mV and pseudo‐fill factors of 77%, underline the high potential of this approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
17.
In this paper, fabrication of a non‐continuous silicon dioxide layer from a silica nanosphere solution followed by the deposition of an aluminium film is shown to be a low‐cost, low‐thermal‐budget method of forming a high‐quality back surface reflector (BSR) on crystalline silicon (c‐Si) thin‐film solar cells. The silica nanosphere layer has randomly spaced openings which can be used for metal‐silicon contact areas. Using glass/SiN/p+nn+ c‐Si thin‐film solar cells on glass as test vehicle, the internal quantum efficiency (IQE) at long wavelengths (>900 nm) is experimentally demonstrated to more than double by the implementation of this BSR, compared to the baseline case of a full‐area Al film as BSR. The improved optical performance of the silica nanosphere/aluminium BSR is due to reduced parasitic absorption in the Al film. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The in situ formation of an emitter in monocrystalline silicon thin‐film solar cells by solid‐state diffusion of dopants from the growth substrate during epitaxy is demonstrated. This approach, that we denote autodiffusion, combines the epitaxy and the diffusion into one single process. Layer‐transfer with porous silicon (PSI process) is used to fabricate n‐type silicon thin‐film solar cells. The cells feature a boron emitter on the cell rear side that is formed by autodiffusion. The sheet resistance of this autodiffused emitter is 330 Ω/□. An independently confirmed conversion efficiency of (14·5 ± 0·4)% with a high short circuit current density of (33·3 ± 0·8) mA/cm2 is achieved for a 2 × 2 cm2 large cell with a thickness of (24 ± 1) µm. Transferred n‐type silicon thin films made from the same run as the cells show effective carrier lifetimes exceeding 13 µs. From these samples a bulk diffusion length L > 111 µm is deduced. Amorphous silicon is used to passivate the rear surface of these samples after the layer‐transfer resulting in a surface recombination velocity lower than 38 cm/s. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Thin‐film silicon solar cells often rely on a metal back reflector separated from the silicon layers by a thin rear dielectric as a back reflector (BR) design. In this work, we aim to obtain a better insight into the influence of the rear‐dielectric/Ag BR design on the optical performance of hydrogenated microcrystalline silicon (µc‐Si:H) solar cells. To allow the application of a large variety of rear dielectrics combined with Ag BRs of diverse topographies, the solar cell is equipped with a local electrical contact scheme that enables the use of non‐conductive rear dielectrics such as air or transparent liquids of various refractive indices n. With this approach, detached Ag BRs having the desire surface texture can be placed behind the same solar cell, yielding a direct and precise evaluation of their impact on the optical cell performance. The experiments show that both the external quantum efficiency and the device absorptance are improved with decreasing n and increasing roughness of the BR. Calculations of the angular intensity distribution of the scattered light in the µc‐Si:H are presented. They allow for establishing a consistent picture of the light trapping in the solar cell. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
An effective rigorous 3‐D optical modeling of thin‐film silicon solar cells based on finite element method (FEM) is presented. The simulation of a flat single junction thin‐film silicon solar cell on thick glass (i.e., superstrate configuration) is used to validate a commercial FEM‐based package, the High Frequency Structure Simulator (HFSS). The results are compared with those of the reference software, Advanced Semiconductor Analysis (ASA) program, proving that the HFSS is capable of correctly handling glass as an incident material within very timely, short, and numerically stable calculations. By using the HFSS, we simulated single junction thin‐film silicon solar cells on glass substrates textured with one‐dimensional (1‐D) and two‐dimensional (2‐D) trapezoid‐shaped diffraction gratings. The correctness of the computed results, with respect to an actual device, is discussed, and the impact of different polarizations on spectral response and optical losses is examined. From the simulations carried out, optimal combinations for period and height in both 1‐D and 2‐D grating configurations can be indicated, leading to short‐circuit current percentage increase with respect to a flat cell of, respectively, 25.46% and 32.53%. With very limited computer memory usage and computational time in the order of tens of minutes for a single simulation, we promote the usage of 3‐D FEM as a rigorous and efficient way to simulate thin‐film silicon solar cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号