共查询到9条相似文献,搜索用时 15 毫秒
1.
该文制备了一种可在pH 5.0~9.0范围内选择性吸附As(Ⅲ)的巯基(—SH)修饰的环氧基改性磁性纳米材料(Fe3O4@SiO2@GMA—S—SH MNPs),将其与新型MSPE-ICP-MS联用实现了水中As(Ⅲ)和As(Ⅴ)的分离分析,As(Ⅴ)经Na2S2O3/KI还原后,采用MSPE-ICP-MS测得总砷含量,然后通过差减法计算。结果显示,方法对As(Ⅲ)的检出限(LOD)为1.5 ng·L-1,富集倍数为150倍,线性范围为5~3 000 ng·L-1,相对标准偏差(RSD)(c=10 ng·L-1,n=7)为9.6%。将该方法用于水质标准样品(GSB07-3171-2014)中无机砷形态分析,测定结果与参考值一致。采用该方法测定自来水As(Ⅲ)和As(Ⅴ)的含量分别为0.036、0.043 μg·L-1,湖水中含量分别为0.24、0.43 μg·L-1,加标回收率为80.9%~101%,RSD为1.5%~10%。该方法具有检出限低、富集倍数大、吸附/解吸动力学快、抗干扰能力强等优点,可用于实际水样中无机砷的形态分析。 相似文献
2.
Eleni Lazaridou Abuzar Kabir Kenneth G. Furton Aristidis Anthemidis 《Molecules (Basel, Switzerland)》2021,26(1)
A novel simple and sensitive, time-based flow injection solid phase extraction system was developed for the automated determination of metals at low concentration. The potential of the proposed scheme, coupled with flame atomic absorption spectrometry (FAAS), was demonstrated for trace lead and chromium(VI) determination in environmental water samples. The method, which was based on a new sorptive extraction system, consisted of a microcolumn packed with glass fiber coated with sol–gel poly (diphenylsiloxane) (sol–gel PDPS), which is presented here for the first time. The analytical procedure involves the on-line chelate complex formation of target species with ammonium pyrrolidine dithiocarbamate (APDC), retention onto the hydrophobic sol–gel sorbent coated surface of glass fibers, and finally elution with methyl isobutyl ketone prior to atomization. All main chemical and hydrodynamic factors, which affect the complex formation, retention, and elution of the metal, were optimized thoroughly. Furthermore, the tolerance to potential interfering ions appearing in environmental samples was also explored. Enhancement factors of 215 and 70, detection limits (3 s) of 1.1 μg·L−1 and 1.2 μg·L−1, and relative standard deviations (RSD) of 3.0% (at 20.0 μg·L−1) and 3.2% (at 20.0 μg·L−1) were obtained for lead and chromium(VI), respec tively, for 120 s preconcentration time. The trueness of the developed method was estimated by analyzing certified reference materials and spiked environmental water samples. 相似文献
3.
开发了一种基于雾化室加热的微流动注射进样系统,并用于血清中Pt的测定。该进样系统由微量毛细管雾化器、加热微型雾化室、八通道十六孔多功能旋转阀、蠕动泵和注射泵组成。研究了雾化室尺寸、加热温度和采样环体积对信号强度的影响。当雾化室内径为9 mm、加热段长度为6 cm,雾化室温度90 ℃,采样环体积为5 μL时,195Pt的信号强度提高了2.31倍,同时信号精密度从5.1%降至2.2%,并得到峰形良好的信号峰。该进样系统的试样消耗小、灵敏度和检出限均优于常规进样系统。10次测定10 μg/L的Pt标准溶液和血清样品溶液,峰高的RSD分别为2.9%和3.3%。该进样系统测得10个血清中的Pt含量与常规进样系统的测试结果无显著差异,在样品量稀少的情况下具有良好的应用价值。 相似文献
4.
Rachaya Buppasang Jaruwan Palasak Rawikan Kachangoon Kraingkrai Ponhong Norio Teshima Rodjana Burakham Supalax Srijaranai Jitlada Vichapong 《Molecules (Basel, Switzerland)》2022,27(19)
An in situ coacervative extraction (IS-CAE) based on a double-solvent supramolecular system coupled to liquid–liquid microextraction is investigated for extraction and enrichment of triazole fungicides. The formation of a double-solvent supramolecular system was generated by in situ formation and used as an extraction solvent for the coacervative extraction method. No disperser solvent was required. This new double-solvent supramolecular system has a higher extraction ability than any of its components alone. The different factors that could affect the extraction capability were studied and optimized, including the type of double extractant and its volume, salt addition, vortex time, and centrifugation time. Under optimum extraction conditions, this method provides high enrichment factors (EFs) of 73–318 with low limits of detection (LODs) of 0.3–1 μg L−1 and limits of quantitation (LOQs) of 1–3 μg L−1. In addition, the proposed method was prosperously applied for the determination of triazole fungicides in water, fruit juice, and soy milk samples. 相似文献
5.
电感耦合等离子体质谱法测定地球化学样品中砷的干扰校正方法 总被引:3,自引:0,他引:3
提出通过37Cl16O/52Cr校正40Ar35Cl对75As干扰的数学校正公式,考察了影响测定准确度的因素,包括HCl浓度、铬和钙的含量等,发现0~0.48 mol/L HCl、0~200μg/L铬和0~60 mg/L钙不影响砷的准确测定;本方法可以明显改善测定HCl介质中砷的准确度和精密度,降低检出限。在此基础上,建立了样品经逆王水水浴分解,电感耦合等离子体质谱直接测定勘查地球化学样品中砷的方法,方法检出限(3s)为0.12μg/g。经国家一级地球化学标准物质验证,测定值与标准值吻合。 相似文献
6.
In this study, a novel sorbent material bearing a bis(aldimine) group was designed and successfully synthesized by covalently bonding a 2-[N,N′-bis(salicylaldimine)]aminoethyl amine ligand to the silica gel surface that was characterized by carbon, hydrogen, and nitrogen elemental analysis, thermogravimetric analysis, and the Fourier transform infrared spectroscopy technique. The sorbent was used for the online solid-phase extraction (SPE) of Cd(II), Cu(II), and Co(II) ions for their determination at trace concentration levels by flame atomic absorption spectrometry. The effective factors for the online SPE such as the pH and the flow rate of the sample solution, and type, volume, and flow rate of eluent were investigated. The concentration levels of Cd(II), Cu(II), and Co(II) were measured in certified reference materials including Virginia tobacco leaves (CTA-VTL-2) and water-trace elements (NWTM-15.2) to validate this method. The metal levels in environmental water were determined by this method, and the values were checked by spiking and recovery experiments and independent analysis by inductively coupled plasma-mass spectrometry. The adsorption capacities of the sorbent were found to be 41.2, 31.6, and 25.6?mg/g for Cd(II), Cu(II), and Co(II), respectively. This method was also successfully used for the determination of Cd(II), Cu(II), and Co(II) concentrations in rice and molasses. 相似文献
7.
The present article reports the application of Thiosemicarbazide‐modified multiwalled carbon nanotubes (MWCNTs‐TSC) as a new, easily prepared selective and stable solid sorbent for the preconcentration of trace Co(II), Cd(II), Cu(II) and Zn(II) ions in aqueous solution prior to the determination by flame atomic absorption spectrometry. The studied metal ions can be adsorbed quantitatively on MMWNTs at pH 5.0 and then eluted completely with HNO3 (1.5 mol L?1) prior to their determination by flame atomic absorption spectrometry. The separation/preconcentration conditions of analytes were investigated, including the pH, the sample flow rate and volume, the elution condition and the interfering ions. The maximum adsorption capacity of the adsorbent at optimum conditions were found to be 32.5, 27.3, 44.5 and 34.1 mg g?1 for Co(II), Cd(II), Cu(II) and Zn(II), and the detection limits of the method were found to be 0.28, 0.13, 0.21 and 0.17 μg L?1, respectively. The proposed method was successfully applied for extraction and determination of the analytes in well water, sea water, wastewater, soil, and blood samples. 相似文献
8.
Fbio Bernardo Providencia Gonzlez-Hernndez Nuno Ratola Vernica Pino Arminda Alves Vera Homem 《Molecules (Basel, Switzerland)》2021,26(11)
Volatile methylsiloxanes (VMSs) constitute a group of compounds used in a great variety of products, particularly personal care products. Due to their massive use, they are continually discharged into wastewater treatment plants and are increasingly being detected in wastewater and in the environment at low concentrations. The aim of this work was to develop and validate a fast and reliable methodology to screen seven VMSs in water samples, by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The influence of several factors affecting the extraction efficiency was investigated using a design of experiments approach. The main factors were selected (fiber type, sample volume, ionic strength, extraction and desorption time, extraction and desorption temperature) and optimized, employing a central composite design. The optimal conditions were: 65 µm PDMS/Divinylbenzene fiber, 10 mL sample, 19.5% NaCl, 39 min extraction time, 10 min desorption time, and 33 °C and 240 °C as extraction and desorption temperature, respectively. The methodology was successfully validated, showing low detection limits (up to 24 ng/L), good precision (relative standard deviations below 15%), and accuracy ranging from 62% to 104% in wastewater, tap, and river water samples. 相似文献
9.
Within the last decade, liquid-phase microextraction (LPME) and micro-solid phase extraction (μSPE) approaches have emerged as substitutes for conventional sample processing procedures for trace metal assays within the framework of green chemistry. This review surveys the progress of the state of the art in simplification and automation of microextraction approaches by harnessing to the various generations of flow injection (FI) as a front end to atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS) or inductively coupled plasma atomic emission spectrometry or mass spectrometry (ICP-AES/MS). It highlights the evolution of flow injection analysis and related techniques as vehicles for appropriate sample presentation to the detector and expedient on-line matrix separation and pre-concentration of trace levels of metals in troublesome matrices. Rather than being comprehensive this review is aimed at outlining the pros and cons via representative examples of recent attempts in automating green sample preparation procedures in an FI or sequential injection (SI) mode capitalizing on single-drop microextraction, dispersive liquid-phase microextraction and advanced sorptive materials including carbon and metal oxide nanoparticles, ion imprinted polymers, superparamagnetic nanomaterials and biological/biomass sorbents. Current challenges in the field are identified and the synergetic combination of flow analysis, nanotechnology and metal-tagged biomolecule detection is envisaged. 相似文献