首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent efforts to model the reactivity of iron oxygenases have led to the generation of nonheme FeIII(OOH) and FeIV(O) intermediates from FeII complexes and O2 but using different cofactors. This diversity emphasizes the rich chemistry of nonheme Fe(ii) complexes with dioxygen. We report an original mechanistic study of the reaction of [(TPEN)FeII]2+ with O2 carried out by cyclic voltammetry. From this FeII precursor, reaction intermediates such as [(TPEN)FeIV(O)]2+, [(TPEN)FeIII(OOH)]2+ and [(TPEN)FeIII(OO)]+ have been chemically generated in high yield, and characterized electrochemically. These electrochemical data have been used to analyse and perform simulation of the cyclic voltammograms of [(TPEN)FeII]2+ in the presence of O2. Thus, several important mechanistic informations on this reaction have been obtained. An unfavourable chemical equilibrium between O2 and the FeII complex occurs that leads to the FeIII-peroxo complex upon reduction, similarly to heme enzymes such as P450. However, unlike in heme systems, further reduction of this latter intermediate does not result in O–O bond cleavage.  相似文献   

2.
A new series of mononuclear Ho3+ complexes derived from the β-diketonate anions: 4,4,4-trifluoro-1-phenyl-1,3-butanedioneate (btfa) and 4,4,4-trifuoro-1-(naphthalen-2-yl)-1,3-butanedionate (ntfa) have been synthesized, [Ho(btfa)3(H2O)2] (1a), [Ho(ntfa)3(MeOH)2] (1b), (1), [Ho(btfa)3(phen)] (2), [Ho(btfa)3(bipy)] (3), [Ho(btfa)3(di-tbubipy)] (4), [Ho(ntfa)3(Me2bipy)] (5), and [Ho(ntfa)3(bipy)] (6), where phen is 1,10-phenantroline, bipy is 2,2′-bipyridyl, di-tbubipy is 4,4′-di-tert-butyl-2,2′-bipyridyl, and Me2bipy is 4,4′-dimethyl-2,2′-bipyridyl. These compounds have been characterized by elemental microanalysis and infrared spectroscopy as well as single-crystal X-ray difraction for 2–6. The central Ho3+ ions in these compounds display coordination number 8. The luminescence-emission properties of the pyridyl adducts 2–6 display a strong characteristic band in the visible region at 661 nm and a series of bands in the NIR region (excitation wavelengths (λex) of 367 nm for 2–4 and 380 nm for 5 and 6). The magnetic properties of the complexes revealed magnetically uncoupled Ho3+ compounds with no field-induced, single-molecule magnet (SMMs).  相似文献   

3.
Triflic acid (HOTf)-bound nonheme Mn(iv)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N′,N′-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(iv)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.  相似文献   

4.
A terminal FeIIIOH complex, [FeIII(L)(OH)]2− (1), has been synthesized and structurally characterized (H4L = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene). The oxidation reaction of 1 with one equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAH) or ceric ammonium nitrate (CAN) in acetonitrile at −45 °C results in the formation of a FeIIIOH ligand radical complex, [FeIII(L˙)(OH)] (2), which is hereby characterized by UV-visible, 1H nuclear magnetic resonance, electron paramagnetic resonance, and X-ray absorption spectroscopy techniques. The reaction of 2 with a triphenylcarbon radical further gives triphenylmethanol and mimics the so-called oxygen rebound step of Cpd II of cytochrome P450. Furthermore, the reaction of 2 was explored with different 4-substituted-2,6-di-tert-butylphenols. Based on kinetic analysis, a hydrogen atom transfer (HAT) mechanism has been established. A pKa value of 19.3 and a BDFE value of 78.2 kcal/mol have been estimated for complex 2.

One-electron oxidation of an FeIII–OH complex (1) results in the formation of a FeIII–OH ligand radical complex (2). Its reaction with (C6H5)3C˙ results in the formation of (C6H5)3COH, which is a functional mimic of compound II of cytochrome P450.  相似文献   

5.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

6.
The redox reactions of thiosulfate with four iron(III) complexes having phenolate-amide-amine coordination, FeIII(L){L = 1,2-bis(2-hydroxybenzamido)ethane, L1; 1,3-bis(2-hydroxybenzamido)propane, L2; 1,5-bis(2-hydroxybenzamido)3-azapentane, L3; and 1,8-bis(2-hydroxybenzamido)3,6-diazaoctane, L4} have been investigated in 10% v/v MeOH + H2O and I = 0.3 mol dm−3. At constant pH (~ 4.8) and under pseudo-first order conditions of [S2O 3 2− ] the reaction obeyed the rate law : − d[FeIII(L)]/dt = k obs [FeIII(L)] + k obs where k obs denotes the observed rate constant of thiosulfate decomposition; k obs = a[S2O 3 2− ] + b[S2O 3 2− ] T 2 is valid for all the complexes, particularly at pH < 6, while k obs = [H+][S2O 3 2− ] T 2 is consistent with the rate law for thiosulfate decomposition proposed earlier. The rate data (k obs) were analysed on the basis of the reactivities of various species of FeIII(L) generated by the equilibrium protonation of the sec-NH of dien and trien spacer units resulting in the ring opening (for [FeIII(L3/L4)]), and acid base equilibrium of the aqua ligand bound to the iron(III) centre ([FeIII(L)(OH2) n ]). The redox activities, both for second and third order paths, show the ligand dependencies : L4<L3<L1<L2 conforming to the fact that the complexes tend to be less susceptible to electron transfer from S2O 3 2− with (i) the increase of the number of chelate rings, (ii) the decrease of overall charge, and (iii) the decrease of ring size offered by the amine moiety (from six membered to five membered one as for [FeIII(L1/L2)(OH2)2]+. There was no evidence for the formation of inner sphere thiosulfato complex, the possibility of the formation of the outer sphere ion-pairs, [Fe(L/HL)(OH2)n +/2+, S2O 3 2− ] with low equilibrium constant value may not be excluded. In view of this, the outer sphere electron transfer (ET) mechanism is the most likely possibility.  相似文献   

7.
The new tetranuclear complexes [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF (Ln = CeIII (1), PrIII (2), NdIII (3)) and [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF·C7H16 (Ln = SmIII (4), EuIII (5), GdIII (6), TbIII (7), DyIII (8), HoIII (9), LuIII (10) and YIII (11)) have been prepared. All compounds were prepared by the reaction between [Fe2BaO(CCl3COO)6(THF)6] and the corresponding LnIII nitrate salt. The crystal structures of 1–4, 8 and 9 have been determined; these isostructural molecules have a non-planar {Fe3Ln(μ3-O)2} “butterfly” core. Magnetic susceptibility measurements show dominant intramolecular antiferromagnetic exchange interactions for all the complexes. 57Fe Mössbauer spectroscopy shows three different environments for the FeIII metal ions, all in their high-spin state S = 5/2 (confirming that no electron transfer from CeIII to FeIII occurs in 1). At the time scale of the Mössbauer spectroscopy (about 10−7 s), evidence of magnetization blocking, i.e. slow relaxation of the magnetization, is observed below 3 K for 7, which was confirmed by ac susceptibility measurements.  相似文献   

8.
Reaction of 2,2′-bipyridine (2,2′-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2′-bipy (1), phen (2); Piv is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2′-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)72-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4′-bipyridine (4,4′-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4′-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = −1.03 cm−1 for 1 and 2). According to magnetic data analysis (JMn-Mn = −(2.69 ÷ 0.42) cm−1) and DFT calculations (JMn-Mn = −(6.9 ÷ 0.9) cm−1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = −57.8 cm−1, JFe-Mn = −20.12 cm−1).  相似文献   

9.
The synthesis and characterization of a series of cobalt(III) complexes of the general type [Co(N2O2)(L2)]+ are described. The N2O2 Schiff base ligands used are Me-salpn (H2Me-salpn = N,N′-bis(methylsalicylidene)-1,3-propylenediamine) (13) and Me-salbn (H2Me-salbn = N,N′-bis(methylsalicylidene)-1,4-butylenediamine) (45). The two ancillary ligands L include: pyridine (py) 1, 3-metheylpyridine (3-Mepy) 2, 1-methylimidazole (1-MeIm) 3, 4-methylpyridine (4-Mepy) 4 and pyridine (py) 5. These complexes have been characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structures of trans-[CoIII(Me-salpn)(py)2]PF6, 1, and cis-α-[CoIII(Me-salbn)(4-Mepy)2]BPh4 · 4-Mepy, 4, have been determined by X-ray diffraction. Examination of the solution and crystalline structures revealed that the outer coordination sphere of the complexes exerts a noticeable influence on the inner coordination sphere of the Co(III) ion. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial (R-py)–cobalt bonds. It has also been observed that the Co(III) state is stabilized with increasing the flexibility of the ligand environment.  相似文献   

10.
While alkylperoxomanganese(iii) (MnIII–OOR) intermediates are proposed in the catalytic cycles of several manganese-dependent enzymes, their characterization has proven to be a challenge due to their inherent thermal instability. Fundamental understanding of the structural and electronic properties of these important intermediates is limited to a series of complexes with thiolate-containing N4S ligands. These well-characterized complexes are metastable yet unreactive in the direct oxidation of organic substrates. Because the stability and reactivity of MnIII–OOR complexes are likely to be highly dependent on their local coordination environment, we have generated two new MnIII–OOR complexes using a new amide-containing N5 ligand. Using the 2-(bis((6-methylpyridin-2-yl)methyl)amino)-N-(quinolin-8-yl)acetamide (H6Medpaq) ligand, we generated the [MnIII(OOtBu)(6Medpaq)]OTf and [MnIII(OOCm)(6Medpaq)]OTf complexes through reaction of their MnII or MnIII precursors with tBuOOH and CmOOH, respectively. Both of the new MnIII–OOR complexes are stable at room-temperature (t1/2 = 5 and 8 days, respectively, at 298 K in CH3CN) and capable of reacting directly with phosphine substrates. The stability of these MnIII–OOR adducts render them amenable for detailed characterization, including by X-ray crystallography for [MnIII(OOCm)(6Medpaq)]OTf. Thermal decomposition studies support a decay pathway of the MnIII–OOR complexes by O–O bond homolysis. In contrast, direct reaction of [MnIII(OOCm)(6Medpaq)]+ with PPh3 provided evidence of heterolytic cleavage of the O–O bond. These studies reveal that both the stability and chemical reactivity of MnIII–OOR complexes can be tuned by the local coordination sphere.

A pair of room-temperature-stable MnIII–alkylperoxo complexes were characterized and shown to oxidize PPh3. Thermal decomposition studies provide evidence of both homolysis and heterolysis of the MnIII–alkylperoxo O–O bond.  相似文献   

11.
Zhang  Si-Wei  Duan  Chun-Ying  Sun  Wei-Yin  Fu  De-Gang  Tang  Wen-Xia 《Transition Metal Chemistry》2001,26(1-2):127-130
A novel cyanide-bridged bimetallic assembly, [Cu(1,3-Pn)2]2[FeIII(CN)6]ClO4 · 2H2O (1,3-Pn = 1,3-diaminopropane), derived from [Fe(CN)6]3– building blocks and four-coordinated bisdiamine metal(II) ions [Cu(1,3-Pn)2]2+ is described and characterized by X-ray crystal analysis. The compound contains a two-dimensional network structure extended through FeIII—CN—Cu linkages. Mössbauer experimental results indicate that the iron is ferric (Fe3+) in the complex. Cryomagnetic measurements reveal an antiferromagnetic exchange interaction between the nearest paramagnetic metal ions in the compound. The exchange mechanism was also discussed.  相似文献   

12.
Dimanganese complexes Mn2 III(L1)(OAc)4 and Mn2 III(L2)(OAc)4 with the phthalazine-based ligands 1,4-di(2′-benzimidazolyl)aminophthalazine (H2L1) and 1,4-di(N-methyl-2′-benzimidazolyl)aminophthalazine (H2L2) have been prepared and characterized. The complexes accelerate the disproportionation of H2O2 into water and dioxygen in buffered aqueous solutions in a near-neutral pH range thus can be regarded as catalase models. Results of kinetic measurements indicate a similar mechanism for the two catalysts, but formation of the proposed peroxo-adduct intermediate is less favored for Mn2 III(L1)(OAc)4. It is presumed to be the reason for the lower rates for this catalyst even at higher pH.  相似文献   

13.
[Pd(cod)(cotl)]ClO4 (cod = 1,5-cyclooctadiene, cotl = cyclooctenyl, C8H13 ) undergoes substitutions with multidentate N-heterocycles: 1,3-bis(benzimidazolyl)benzene (L1), 1,3-bis(1-methylbenzimidazol-2-yl)benzene (L2), 2,6-bis(benzimidazolyl)pyridine (L3) and 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (L4) to yield mono/binuclear complexes: [Pd(cotl)(L1)(OClO3)], [Pd(cotl)(L)]ClO4 (L = L2 or L3) and [Pd(cotl)2(L4)](ClO4)2. Dihalobridged binuclear complexes [PdX(cotl)]2 (X = Cl or Br) undergo halogen bridge cleavages with the multidentate N-heterocycles to form binuclear complexes of the type [PdX(cotl)2L] (X = Cl or Br; L = L1, L2, L3 or L4). The complexes were characterized by elemental analyses, 1H-, 13C-n.m.r., i.r., far-i.r. and FAB-mass spectral studies.  相似文献   

14.
Three new mononuclear complexes of nitrogen–sulfur donor sets, formulated as [FeII(L)Cl2] (1), [CoII(L)Cl2] (2) and [NiII(L)Cl2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes 1 and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit FeII/FeIII, CoII/CoIII and NiII/NiIII quasi-reversible redox couples in cyclic voltammograms with E1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively.  相似文献   

15.
Complexation of FeII and FeIII with azaheterocyclic ligands L (L = phen or bipy) were studied in the presence and in the absence of boron cluster anions [BnHn]2– (n = 10, 12). The reactions were carried out in air at room temperature in organic solvents and/or water. In all the solvents used, well known [FeL3]An (An = 2Cl or SO42–) ferrous complexes were formed from FeII salts. Composition of ferric complexes with L ligands depends on the nature of solvent: either dinuclear oxo‐iron(III) chlorides [L2ClFeIII–O–FeIIIL2Cl]Cl2 or ferric ferrates(III) [FeIIIL2Cl2][FeIIICl4], or [FeIIIL2Cl2][FeIIICl4L] were isolated from FeIII salts. Introduction of the closo‐borate anions to a Fe3+(or Fe2+)/L/solv. mixture stabilizes ferrous cationic complexes [FeL3]2+ in all the solvents used: only ferrous [FeL3][BnHn] (n = 10, 12) complexes were isolated from all the reaction mixtures in the presence of boron cluster anions.  相似文献   

16.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

17.
Two new copper(II) complexes with aminothioether ligands, [Cu(L1)(ClO4)](ClO4) · 0.5H2O (1) and [Cu(L2)(H2O)](ClO4)2 · H2O (2) (L1 = 2-benzyl-1,3-bis(aminoethylthio)propane and L2 = 2-(4-butylbenzyl)-1,3-bis(aminoethylthio)propane), have been synthesized and characterized. The single crystal X-ray diffraction analysis reveals that both 1 and 2 adopt distorted square pyramidal geometries. The binding modes of both complexes with calf thymus DNA were investigated by UV–Vis and CD spectroscopies. The results show that both complexes mainly adopt an electrostatic attraction binding mode with DNA and the binding constants are (1.62 ± 0.02) × 103 and (2.02 ± 0.02) × 103 M−1, respectively. Both complexes are able to cleave pBR322 plasmid DNA efficiently in the presence of ascorbic acid and the activity of 2 is higher than that of 1. The DNA cleavage by 1 and 2 were inhibited strongly in the presence of DMSO and tert-butyl alcohol, which suggests that hydroxyl radicals are the reactive oxygen species for the cleavage.  相似文献   

18.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

19.
Summary The chelating behaviour of two biologically active ligands, pyridine-2-carboxaldehyde(4-phenyl) thiosemicarbazone(L1H) and pyridine-2-carboxaldehyde thiosemicarbazone(LH), towards FeIII, CoIII, FeII and RhIII has been investigated. The ligands act as tridentate N–N–S donors, resulting in the formation of bis-chelate complexes of the type MIII(A)2X·nH2O (A=L1 or L; X=Cl, ClO4; M=CoIII, RhIII, FeIII), FeII(L1H)2SO4·2H2O and FeII(L1)2·H2O. Biological activity of the ligands and the metal complexes in the form ofin vitro antibacterial activities towardsE. coli has been evaluated and the possible reasons for enhancement of the activity of ligands on coordination to metal ion is discussed.  相似文献   

20.
The influence of magnetic interactions to the magnetization dynamics was well experimentally studied in a 3d‐4f single‐molecule magnet (SMM) [TbIII2FeIII3(μ5‐O)L2(NO3)4Cl] ( 1 , H4L = N,N,N’,N’‐tetrakis(2‐hydroxyethyl)ethylene diamine) and its diamagnetic‐ ion‐diluted samples. Significant ferromagnetic coupling between TbIII and FeIII ions and SMM behavior of 1 were observable, which proved clearly that the magnetic interaction between 3d‐4f spin carriers has also an excessive impact on fine‐tuning the magnetization dynamic behaviors of 3d‐4f complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号