首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self‐assembly of two types of linear ABA triblock copolymers confined in cylindrical nanopores is studied using simulated annealing. The effects of pore size and block copolymer chain architecture on morphology, chain conformations and bridging fraction are investigated. For the bulk cylinder‐forming copolymers, novel structures such as helices and stacked toroids form, which depend sensitively on the pore size. Several significant differences between the two types of copolymers are predicted and explained based on the differences in their chain conformations and chain architectures. A simple model is proposed to explain the mean square radius of gyration for the bridge and loop chains.

  相似文献   


2.
Novel π‐conjugated coil–rod–coil triblock oligomers containing optoelectronic active oligoaniline segments were synthesized. The block oligomer can self‐assemble into diverse aggregating morphologies including spherical micelles and thin‐layer vesicles in THF, which is found associated with the removing of the protecting groups of oligoaniline segments. A possible mechanism was proposed to explain the self‐assembly behavior changes in which chain conformation variation of the aniline segments initiated from deprotection of the nitrogen atoms is pointed to be the key factor that dominates the transition process.

  相似文献   


3.
Thermal field‐flow fractionation (ThFFF) is used as a novel fractionation technique to investigate the molecular heterogeneity of PB‐b‐PVP‐b‐PtBMA triblock copolymers. Such copolymers cause major problems in liquid chromatography due to very strong polar interactions with the stationary phase. ThFFF separates the copolymers with regard to size and/or chemical composition based on the normal and thermal diffusion coefficients. The separation mechanism in ThFFF and the chemical composition of the separated species is elucidated by online 1H NMR. Based on the compositional analysis and a calibration of the system with the respective homopolymers, the samples are quantified regarding their molar masses, chemical compositions, and microstructures providing comprehensive information on the complex structure of these block copolymers.

  相似文献   


4.
L,L ‐lactide (LA) and ε‐caprolactone (CL) block copolymers have been prepared by initiating the poly(ε‐caprolactone) (PCL) block growth with living poly(L,L ‐lactide) (PLA*). In the previous attempts to prepare block copolymers this way only random copolyesters were obtained because the PLA* + CL cross‐propagation rate was lower than that of the PLA–CL* + PLA transesterification. The present paper shows that application of Al‐alkoxide active centers that bear bulky diphenolate ligands results in efficient suppression of the transesterification. Thus, the corresponding well‐defined di‐ and triblock copolymers could be prepared.

  相似文献   


5.
Stimuli‐responsive polymers are the subject of intense research because they are able to show responses to various environmental changes. Among those stimuli, light has attracted much attention since it can be localized in time and space and it can also be triggered from outside of the system. In this paper, we review light‐responsive block copolymers (LRBCs) that combine characteristic features of block copolymers, e.g., self‐assembly behavior, and light‐responsive systems. The different photo‐responsive moieties that have been incorporated so far in block copolymers as well as the proposed applications are discussed.

  相似文献   


6.
Summary: Amphiphilic cylindrical brush‐coil block copolymers consisting of a polystyrene coil and a cylindrical brush block with poly(acrylic acid) side chains are prepared by ATRP of t‐butylacrylate from a block comacroinitiator. Upon acidolysis of the poly(t‐butylacrylate), water‐soluble polymers were obtained that were observed to form micelles consisting of 4–5 block copolymers on average in aqueous solution. The star‐like nature of such micelles was clearly visualized by scanning force microscopy.

Schematic of coil‐cylindrical brush block copolymer PS‐b‐(PiBEMA‐g‐PAA), its AFM image clearly showing the main chain and the PAA corona of the cylindrical brush block.  相似文献   


7.
Summary: Amphiphilic triblock copolymers (PEOxb‐PDMSyb‐PEOx) with different block lengths were synthesized and multi‐morphological complex crew‐cut, star‐like, and short‐chain aggregates were prepared by self‐assembly of the given copolymers. The morphologies and dimensions of the aggregates can be well controlled by variation of the preparation conditions. TEM, SEM, FFR‐TEM, and LLS studies show the resulting morphologies range from LCMs, unilamellar or multilayer vesicles, LCVs, porous spheres to nanorods.

TEM images of the vesicles formed from PEO‐b‐PDMS‐b‐PEO.  相似文献   


8.
A thermoresponsive block copolymer, namely poly(acryloyl glucosamine)‐block‐poly(N‐isopropylacryamide) (PAGA180b‐PNIPAAM350) was simultaneously self‐assembled and crosslinked in aqueous medium via RAFT polymerization at 60 °C to afford core‐crosslinked micelles exhibiting a glycopolymer corona and a PNIPAAM stimuli‐responsive core. An acid‐labile crosslinking agent, 3,9‐divinyl‐2,4,8,10‐tetraoxaspiro[5.5]undecane, was employed to generate thermosensitive and acid‐degradable core‐shell nanoparticles. Stable against degradation at pH = 6 and 8.2, the resulting core crosslinked micelles readily hydrolyzed into well‐defined free block copolymers at lower pH (30 min and 12 h respectively at pH = 2 and 4).

  相似文献   


9.
Summary: Dissipative particle dynamics simulation was performed to study the formation of multicompartment micelles from ABC star triblock copolymers in water. The study revealed some new morphologies that had not been observed before and also provided a direct visualization of the evolution of wormlike multicompartment micelles that follows the fusion process. Thus, this work provides molecular understanding of multicompartment micelles which will be useful for the future rational synthesis of novel micelles.

Multicompartment micelles formed from ABC star triblock copolymers in water by DPD simulations.  相似文献   


10.
Au nanoparticles (NPs) and polymer composite particles with phase‐separation structures were prepared based on phase separation structures. Au NPs were successfully synthesized in amphiphilic block‐copolymer micelles, and then composite particles were formed by a simple solvent evaporation process from Au NPs and polymer solution. The phase separated structures (Janus and Core‐shell) were controlled by changing the combination of polymers having differing hydrophobicity.

  相似文献   


11.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


12.
Summary: A series of novel mesogen‐jacketed liquid crystal miktoarm star rod‐coil block copolymers were synthesized via atom transfer radical polymerization (ATRP). Their architectures {coil conformation of styrene segment and rigid rod conformation of {2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (MPCS) segment} were confirmed by GPC, 1H NMR, and MALDI‐TOF studies. The liquid crystalline behaviors of the synthesized copolymers are evidenced from POM observation. The liquid crystalline phase depends on the molecular weights of the rigid rod arm of miktoarm star copolymers.

Miktoarm star rod‐coil block copolymer.  相似文献   


13.
The ability of star‐shaped, block copolymer‐based unimolecular micelles to encapsulate and transport guest molecules was studied. Analytical ultracentrifugation studies clearly showed that methyl‐orange guest molecules could be encapsulated and transported, together with unimolecular micelles consisting of 5‐arm, star‐shaped block copolymers with a poly(ethylene glycol) core and a poly(ε‐caprolactone) corona. Sedimentation‐velocity and equilibrium measurements were performed to determine the sedimentation coefficients, molar masses, and diffusion coefficients of the loaded, unimolecular micelles. It was observed that the transport of guest molecules by unimolecular micelles was a function of the molecular weight of the star‐shaped block copolymers and therefore also of their size.

  相似文献   


14.
In this work, the formation of two‐compartment micelles from symmetric pentablock copolymers in selective solvents was studied using the dissipative particle dynamics simulation technique, and the effects of block lengths and solvent quality were investigated. The simulations revealed several new morphologies and their formation mechanisms were elucidated at the molecular level, providing useful information that may contribute to the future rational design and synthesis of novel multicompartment micelles with tailored structures.

  相似文献   


15.
We report a combined experimental and theoretical study of micellization of block copolymer with hydrophilic nonionic corona‐forming blocks and weak polyelectrolyte (wPE) core‐forming blocks with pH‐triggered solubility in aqueous solutions. We demonstrate that in addition to micelles with neutral cores, there exist two other types of micelles with PE‐ or ionomer‐like cores, in which monovalent counterions are released or condensed on core wPE block, respectively. The transition between the two types of micelles occurred upon changes in ionization of the PE core block and resulted in nonmonotonous changes of aggregation number as a function of pH. Such micelles with stimulus responsive cores represent promising nanocarriers for controlled delivery applications.

  相似文献   


16.
Summary: PE‐block‐PS and P(E‐co‐P)‐block‐PS block copolymers were synthesised via sequential monomer addition during homogeneous polymerisation on various phenoxyimine catalysts. One phenoxyimine catalyst was tailored to produce high molecular weight block copolymers containing both, polyolefin and polystyrene segments. According to chromatographic analysis and TEM morphology studies, blends of block copolymers and PE homopolymers [or P(E‐co‐P), respectively] were formed. The direct olefin/styrene block copolymer synthesis on phenoxyimine catalysts represents an attractive, new one‐pot route to styrenic block copolymers which are commercially prepared by anionic styrene/diene block copolymerisation followed by hydrogenation.

  相似文献   


17.
A Dissipative particle dynamics (DPD) simulations are performed to study the cooperative self‐assembly of coil–rod–coil triblock copolymers and nanoparticles in solution. The results show that, when the nanoparticle concentration exceeds a given value, the ternary systems can form a novel nanocage composed of two‐end coil‐caps and middle rod‐linkers. The novel nanocage is very similar to the real bird cage and the captured nanoparticles like the bird. It is the first nanocage from the self‐assembly of coil–rod–coil triblock copolymers. This may be used for the release of drugs and fertilizers, or as nanoreactors.

  相似文献   


18.
We present a combinatorial approach to the synthesis of block copolymer series by anionic polymerization, utilizing a specially designed reactor setup. The setup features one main reactor and three secondary reactors to carry out anionic polymerizations on laboratory‐scale quantities at low temperatures. The implementation was demonstrated with three series of AB‐ and ABC‐block copolymers with identical A‐ and AB‐blocks, respectively. The B‐block in AB‐diblock copolymers and the C‐block in ABC‐triblock copolymers can be varied with respect to block length or chemical constitution. Well‐defined series of block copolymers are useful for advanced optimization of functional block copolymers in nanotechnology applications.

  相似文献   


19.
Summary: Fabrication of honeycomb‐patterned films from amphiphilic dendronized block copolymer (PEO113b‐PDMA82) by ‘on‐solid surface spreading’ and ‘on‐water spreading’ method is reported. Highly ordered honeycomb films with quasi‐horizontally paralleled double‐layered structure can be fabricated by the on‐solid surface spreading method. This work raises the possibility that such structures can be formed in amphiphilic dendronized block copolymers and extends the family of source materials.

  相似文献   


20.
The synthesis of cationic mono‐(6‐O‐(1‐vinylimidazolium))‐ß‐cyclodextrin with toluenesulfonate as the corresponding anion is described. Free‐radical copolymerization of the resulting host–guest complex with N‐isopropylacrylamide or N,N‐diethylacrylamide yielded copolymers showing a temperature‐controlled solubility window in water. The impact of different anionic guests and salt concentrations on solubility behavior was investigated via turbidity measurements.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号