首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2015,15(2):135-143
Solid polymer electrolytes consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50:50 wt/wt%) with lithium triflate (LiCF3SO3) as a dopant ionic salt at stoichiometric ratio [EO + (CO)]:Li+ = 9:1, poly(ethylene glycol) (PEG) as plasticizer (10 wt%) and montmorillonite (MMT) clay as nanofiller (3 wt%) have been prepared by solution cast followed by melt–pressing method. The X–ray diffraction study infers that the (PEO–PMMA)–LiCF3SO3 electrolyte is predominantly amorphous, but (PEO–PMMA)–LiCF3SO3–10 wt% PEG electrolyte has some PEO crystalline cluster, whereas (PEO–PMMA)–LiCF3SO3–10 wt% PEG–3 wt% MMT electrolyte is an amorphous with intercalated and exfoliated MMT structures. The complex dielectric function, ac electrical conductivity, electric modulus and impedance spectra of these electrolytes have been investigated over the frequency range 20 Hz to 1 MHz. These spectra have been analysed in terms of the contribution of electrode polarization phenomenon in the low frequency region and the dynamics of cations coordinated polymer chain segments in the high frequency region, and also their variation on the addition of PEG and MMT in the electrolytes. The temperature dependent dc ionic conductivity, dielectric relaxation time and dielectric strength of the plasticized nanocomposite electrolyte obey the Arrhenius behaviour. The mechanism of ions transportation and the dependence of ionic conductivity on the segmental motion of polymer chain, dielectric strength, and amorphicity of these electrolytes have been explored. The room temperature ionic conductivity values of the electrolytes are found ∼10−5 S cm−1, confirming their use in preparation of all-solid-state ion conducting devices.  相似文献   

2.
A solid polymer electrolyte (SPE) composites consisting blend of poly(ethylene oxide) (PEO) and poly(ethylene glycol) (PEG) as the polymer host with LiCF3SO3 as a Li+ cation salt and TiO2 nanoparticle which acts as a filler were prepared using solution-casting technique. The SPE films were characterized by X-ray diffraction and Fourier transform infrared analysis to ensure complexation of the polymer composites. Frequency-dependent impedance spectroscopy observation was used to determine ionic conductivity and dielectric parameters. Ionic conductivity was found to vary with increasing salt and filler particle concentrations in the polymer blend complexes. The optimum ambient temperature conductivity achieved was 2.66?×?10?4?S?cm?1 for PEO (65 %), PEG (15 %), LiCF3SO3 (15 %), ethylene carbonate (5 %), and TiO2 (3 %) using weight percentage. The dielectric relaxation time obtained from a loss tangent plot is fairly consistent with the conductivity studies. Both Arrhenius and VTF behaviors of all the composites confirm that the conductivity mechanism of the solid polymer electrolyte is thermally activated.  相似文献   

3.
S. Rajendran  R. Kannan  O. Mahendran 《Ionics》2001,7(1-2):126-129
Solid polymer electrolytes of high ionic conductivity are prepared using poly acrylonitrile (PAN), propylene carbonate (PC), ethylene carbonate (EC) and LiCF3SO3. The polymer films are characterised by X-ray diffraction, FTIR and a.c. impedance spectroscopic techniques. The conductivity studies of PAN-LiCF3SO3-PC-EC polymer electrolyte systems are carried out in the temperature range 301–373 K. The temperature dependence of the conductivity of the polymer films obeys the VTF relation. The conductivity values are presented and the results are discussed.  相似文献   

4.
S. Ramesh  Lim Jing Yi 《Ionics》2009,15(6):725-730
Poly(vinylchloride) (PVC) is an insulator and acts as a host in polymer electrolyte systems where addition of inorganic salt lithium trifluoromethanesulfonate (LiCF3SO3) and dibutyl phthalate (DBP) converts the system to become conductor. The conductivity of polymer electrolytes is explained on the basis of ionic mobility. Thirty-five weight percent DBP plasticized polymer electrolyte has the highest conductivity value (3.30?×?10?9 S cm?1) at 303 K. Temperature dependence of the conductivity of polymer films obeys the Arrhenius rule. X-ray diffraction (XRD) proves that addition of DBP will increase the amorphous nature of the system and lead to enhancement in ionic conductivity. Complexation between high molecular weight PVC, LiCF3SO3, and DBP is confirmed by the shifting of peaks, decreasing of peaks intensity, and broadening of peaks in XRD. Thermogravimetric analysis reveals that addition of DBP to PVC–LiCF3SO3 system reduces the stability of the film. Subsequently, thermal stability decreases with the increase in DBP content in the polymer electrolytes.  相似文献   

5.
《Solid State Ionics》1999,116(3-4):197-209
A novel family of Li+-based organic/inorganic materials obtained by the sol–gel process is proposed. The compounds, named urethanesils, are obtained as thin, transparent, elastomeric and amorphous monolithic films. They incorporate solvating pendant methyl end-capped short poly(oxyethylene) chains which are covalently bonded to the silica backbone by means of urethane cross-links. The urethane linkages are formed by reacting 3-isocyanatepropyltriethoxysilane with hepta(ethylene glycol) methyl ether (HEGME). Li+ has been introduced in the urethanesils as lithium triflate (LiCF3SO3). Two compositions of salt have been considered: n=100 and 8, where n represents the molar ratio of (OCH2CH2) units per lithium ion. Infrared spectroscopy provides conclusive evidence that, although the oligopolyether chains of HEGME become less disordered upon formation of the inorganic network, the addition of salt induces disorder. The FTIR spectrum of the most concentrated urethanesil strongly suggests that the triflate ions are essentially coordinated in the material. The thermal and mechanical properties of the undoped and doped urethanesils have been investigated by DSC and DMTA. At 90°C, the highest ionic conductivity (approximately 10−6 Ω−1 cm−1) is observed for composition n=8. The electrochemical stability domain of the least concentrated urethanesil spans 5 V.  相似文献   

6.
Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF3SO3) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.  相似文献   

7.
S. Ramesh  Liew Chiam Wen 《Ionics》2010,16(3):255-262
Composite polymer electrolyte systems composed of poly(methyl methacrylate) (PMMA) as the host polymer, lithium trifluoromethanesulphonate (also known as lithium triflate; LiCF3SO3) as dopant salt, and a variety of different concentrations of nano-sized fumed silica (SiO2) as inorganic filler were studied. The effect upon addition of SiO2 on the ionic conductivity of the composite polymer electrolytes was investigated, and it was proven that the ionic conductivity had been enhanced. In addition, the interfacial stability also showed improvement. Maximum conductivity was obtained upon addition of 2 wt.% SiO2. The complexation of PMMA and LiCF3SO3 was verified through Fourier transform infrared studies. The thermal stability of the polymer electrolytes was also found to improve after dispersion of inorganic filler. This was proven in the thermogravimetric studies.  相似文献   

8.
MG30 is natural rubber grafted with 30% poly(methyl methacrylate). Gel polymer electrolytes containing MG30–LiCF3SO3–X (X = propylene carbonate, ethylene carbonate) are prepared by solution casting technique. The polymer–salt complexes were investigated using Fourier-transformed infrared. The ionic conductivity of the electrolytes are determined by the ac impedance studies over the temperature range of 303–383 K and is observed to obey the Vogel–Tamman–Fulcher (VTF) rule. The Li+ transference number obtained using the Bruce and Vincent method is <0.3. The Li/Li+ interface stability is established and the electrolytes were found to be able to withstand a voltage of more than 4.2 V.  相似文献   

9.
The conducting polymer electrolyte films consisting of polyacrylonitrile (PAN) as the host polymer, lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) as inorganic salts were prepared by the solution-cast technique. The pure PAN film was prepared as a reference. The ionic conductivity for the films is characterized using impedance spectroscopy. The room temperature conductivity for the PAN + 26 wt.% LiCF3SO3 film and the PAN + 24 wt.% NaCF3SO3 film is 3.04 × 10−4 S cm−1 and 7.13 × 10−4 S cm−1, respectively. XRD studies show that the complexation that has occurred in the PAN containing salt films and complexes formed are amorphous. The FTIR spectra results confirmed the complexation has taken place between the salt and the polymer. These results correspond with surface morphology images obtained from SEM analysis. The conductivity–temperature dependence of the highest conducting film from PAN + LiCF3SO3 and PAN + NaCF3SO3 systems follows Arrhenius equation in the temperature range of 303 to 353 K. The PAN containing 24 wt.% LiCF3SO3 film has a higher ionic conductivity and lower activation energy compared to the PAN containing 26 wt.%LiCF3SO3 film. These results can be explained based on the Lewis acidity of the alkali ions, i.e., the interaction between Li+ ion and the nitrogen atom of PAN is stronger than that of Na+ ion.  相似文献   

10.
《Composite Interfaces》2013,20(4-6):347-358
Nanocomposite solid polymer electrolytes (NSPEs) based on poly(vinylidene fluoride) (PVDF) were prepared by dispersing two kinds of organoclay (Cloisite® 30B, Cloisite® 15A) consisting of silicate layers in the polymer matrix. The effect of affinity between PVDF and organoclay as the filler on ionic conductivity was investigated in relation to its content, dispersed condition of organoclay, and structural changes of nanocomposites. The characterizations of PVDF-based nanocomposites with various organoclay contents were carried out by XRD, TEM, DSC, and DMA. In order to confirm the ion conduction properties of NSPEs with LiCF3SO3 at room temperature, ac impedance analyzer and FT-IR spectrometer were used. As a result, a higher ionic conductivity appeared in the case of NSPE with C15A than that with C30B and the maximum conductivity was 1.04 × 10–3 S/cm for the NSPE containing 5 wt% of C15A and 40 wt% of LiCF3SO3.  相似文献   

11.
Surface treatment of TiO2 was done by immersing filler particles in 2 and 4 % sulphuric acid (H2SO4) aqueous solutions. Untreated, 2 and 4 % H2SO4-treated TiO2 were referred as neutral, weakly acidic, and acidic TiO2, respectively. Composite polymer electrolytes (CPEs) based on hexanoyl chitosan–polystyrene blend were prepared by using lithium trifluromethanesulfonate (LiCF3SO3) as the doping salt and three different types of the TiO2 fillers. X-ray diffraction (XRD) results showed that the addition of TiO2 reduced the crystalline fraction of the electrolytes. The conductivity performance of the CPEs varied in the order: acidic?<?weakly acidic?<?TiO2 free?<?neutral TiO2. A model based on the interaction between Lewis acid–base sites of TiO2 with ionic species of LiCF3SO3 has been proposed to understand the conductivity mechanism brought about by the different types of fillers. The conductivity enhancement by neutral TiO2 is attributed to the increase in the mobility of Li+ cations. Acidic TiO2 decreased the conductivity by decreasing the anionic contribution. The conductivity variation with filler content was discussed on the basis of the number of free ions.  相似文献   

12.
The proton conducting solid-state polymer electrolyte comprising blend of poly(vinyl alcohol) (PVA) and poly(N-vinylimidazole) (PVIM), ammonium tetrafluoroborate (NH4BF4) as salt, and polyethylene glycol (PEG) (molecular weight 300 and 600) as plasticizer is prepared at various compositions by solution cast technique. The prepared films are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy analysis. The conductivity–temperature plots are found to follow an Arrhenius nature. The conductivity of solid polymer electrolytes is found to depend on salt and plasticizer content and also on the dielectric constant value and molecular weight of the plasticizer. Maximum ionic conductivity values of 2.20?×?10?4 and 1.28?×?10?4?S?cm?1 at 30 °C are obtained for the system (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300 and (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300, respectively. The blended polymer, complexed with salt and plasticizer, is shown to be a predominantly ionic conductor. The proton transport in the system may be expected to follow Grotthuss-type mechanism.  相似文献   

13.
An attempt has been made in the present work to combine gel and composite polymer electrolyte routes together to form a composite polymeric gel electrolyte that is expected to possess high ionic conductivity with good mechanical integrity. Polyethylene glycol (PEG) based composite gel electrolytes using polyvinyl alcohol (PVA) as guest polymer have been synthesized with 1 molar solution of ammonium thiocyanate (NH4SCN) in dimethyl sulphoxide (DMSO) and electrically characterized. The ionic conductivity measurements indicate that PEG:PVA:NH4SCN-based composite gel electrolytes are superior (σ max = 5.7 × 10−2 S cm−1) to pristine electrolytes (PEG:NH4SCN system) and conductivity variation with filler concentration remains within an order of magnitude. The observed conductivity maxima have been correlated to PEG:PVA:NH4SCN-and PVA:NH4SCN-type complexes. Temperature dependence of conductivity profiles exhibits Arrhenius behaviour in low temperature regime followed by VTF character at higher temperature.   相似文献   

14.
The blend-based polymer electrolyte comprising poly(vinyl chloride) (PVC) and poly(ethylene glycol) (PEG) as host polymer and lithium bis(perfluoroethanesulfonyl)imide as complexing salt have been prepared. Ethylene carbonate and dimethyl carbonate (50:50 v/v) are used as plasticizer for the system. The barium titanate is used as a filler, and the ratio of (PEG:BaTiO3) is varied to study its effect on the conductivity behavior of the electrolyte. XRD and ac impedance studies are carried out on the prepared samples. The ac impedance measurements show that the conductivity of the prepared samples depends on the (PEG:BaTiO3) ratio, and its value is higher for (15:5) wt.% of (PEG:BaTiO3)-incorporated film. The temperature dependence of the conductivity of the polymer films obeys VTF relation. The role of ferroelectric filler in enhancing the conductivity is studied. The thermal stability of the film is ascertained from TG/DTA studies. The phase morphological study reveals that the porous nature of the polymer electrolyte membranes depends on the (PEG:BaTiO3) ratio.  相似文献   

15.
Lithium salt, LiX (where X = BF 4 ? , I?, CF3SO 3 ? , COOCF 3 ? or ClO 4 ? ), was incorporated into epoxidized natural rubber (ENR). Thin films of LiX-ENR polymer electrolytes (PEs) were obtained via solvent casting method. These electrolytes were characterized using SEM/X-mapping, FTIR, differential scanning calorimeter, thermogravimetry analysis, and impedance spectroscopy. The trend in thermal stability and ionic conductivity of LiX-ENR PEs follow LiBF4 > > LiCF3SO3 ~ LiCOOCF3 > LiI > > LiClO4. The LiClO4 hardly dissociates and formed LiClO4 aggregates within the polymer matrix that resulted in a PE with low thermal stability and low ionic conductivity. The LiCF3SO3, LiCOOCF3, and LiI, however, exert moderate interactions with the ENR, and their respective PEs exhibit moderate ionic conductivity and thermal property. The occurrence of epoxide ring opening and complexation or cross-linking reactions in and between the ENR chains that involve BF 4 ? ions have produced a LiBF4-ENR PE with superior thermal property and ionic conductivity as compared to other PEs studied in this work.  相似文献   

16.
A solid polymer electrolytes (SPE) comprising blend of poly(ethylene oxide; PEO) and epoxidized natural rubber as a polymer host and LiCF3SO3 as a dopant were prepared by solution-casting technique. The SPE films were characterized by field emission scanning electron microscopy to determine the surface morphology, X-ray diffraction, and differential scanning calorimeter to determine the crystallinity and thermogravimetric analysis to confirm the mass decrease caused by loss of the solvent. While the presence of the complexes was investigated by reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Electrochemical impedance spectroscopy was conducted to obtain ionic conductivity. Scanning electron microscopy analysis showed that a rough surface morphology of SPE became smoother with addition of salt, while ATR-FTIR spectroscopy analysis confirmed the polymer salt complex formation. The interaction occurred between the salt, and ether group of polymer host where the triple peaks of ether group in PEO merged and formed one strong peak at 1,096 cm−1. Ionic conductivity was found to increase with the increase of salt concentration in the polymer blend complexes. The highest conductivity achieved was 1.4 × 10−4 Scm−1 at 20 wt.% of LiCF3SO3, and this composition exhibited an Arrhenius-like behavior with the activation energy of 0.42 eV and the preexponential factor of 1.6 × 103 Scm−1.  相似文献   

17.
We present conductivity, N.M.R. and D.S.C. measurements in two P(EO) complexes : P(EO) 8LiCF3SO3 and P(EO) 10NaI. From N.M.R. experiments, we deduce the respective amount of crystalline and elastomeric phases at all temperatures, as well as the salt concentration in these various phases. The elastomeric phase is shown to be responsible of the ionic conductivity at all temperatures, and to be very dilute (n ? 25 just above the pure P(EO) melting point. The high melting salt-rich complexes are found surstoechiometric (n ? 3.5). The various factors affecting the temperature dependence of the conductivity are discussed, as well as the kinetics problems.  相似文献   

18.
A sequence of novel plasticized polymer nanocomposite electrolyte systems based on polyethylene oxide (PEO) as polymer host, LiCF3SO3 as salt, and a variety of concentrations of nanochitosan as inert filler, succinonitrile as a solid non-ionic plasticizer has been prepared. The prepared membranes were subjected to X-ray diffraction, FT-IR, tensile strength, morphological studies, thermal analysis, AC ionic conductivity measurement, and interfacial analyses. The combined effect of succinonitrile and nanochitosan on the electrochemical properties of polymer electrolytes has been studied, and it was confirmed that the ionic conductivity is significantly increased. The maximum ionic conductivity of the plasticized nanocomposite polymer electrolytes are found to be in the range of 10?2.8?S/cm. Besides, the interfacial stability also shows a significant improvement. The tensile measurement and thermal analysis results illustrate that the electrolytes based on that polymer host possess good mechanical and thermal stabilities.  相似文献   

19.
A solid polymer electrolyte (SPE) is synthesized by solution casting technique. The SPE uses poly(ethylene oxide) PEO as a host matrix doped with lithium triflate (LiCF3SO3), ethylene carbonate (EC) as plasticizer and nano alumina (Al2O3) as filler. The polymer electrolytes are characterized by Impedance Spectroscopy (IS) to determine the composition of the additive which gives the highest conductivity for each system. At room temperature, the highest conductivity is obtained for the composition PEO-LiCF3SO3-EC-15%Al2O3 with a value of 5.07 10− 4 S/cm. The ionic conductivity of the polymer electrolytes increases with temperature and obeys the Arrhenius law. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies indicate that the conductivity increase is due to an increase in amorphous content which enhances the segmental flexibility of polymeric chains and the disordered structure of the electrolyte. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components. Scanning electron microscopy (SEM) images show the changes morphology of solid polymer electrolyte.  相似文献   

20.
The plasticized polymer electrolyte composed of polyvinylchloride (PVC) and polyvinylidene fluoride (PVdF) as host polymer, the mixture of ethylene carbonate and propylene carbonate as plasticizer, and LiCF3SO3 as a salt was studied. The effect of the PVC-to-PVdF blend ratio with the fixed plasticizer and salt content on the ionic conduction was investigated. The electrolyte films reveal a phase-separated morphology due to immiscibility of the PVC with plasticizer. Among the three blend ratios studied, 3:7 PVC–PVdF blend ratio has shown enhanced ionic conductivity of 1.47 × 10−5 S cm−1 at ambient temperature, i.e., the ionic conductivity decreased with increasing PVC-to-PVdF ratio and increased with increasing temperature. A temperature dependency on ionic conductivity obeys the Arrhenius behavior. The melting endotherms corresponding to vinylidene (VdF) crystalline phases are observed in thermal analysis. Thermal study reveals the different levels of uptake of plasticizer by VdF crystallites. The decrease in amorphousity with increase in PVC in X-ray diffraction studies and larger pore size appearance for higher content of PVC in scanning electron microscopy images support the ionic conductivity variations with increase in blend ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号