首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: We report novel organic‐inorganic hybrid nanomaterials that consist of polymer hydrogel nanoparticles (nanogels) and calcium phosphate. Hybrid nanoparticles that measure ca. 40 nm are synthesized from a dilute solution of hydroxyapatite using nanogels as templates for calcium phosphate mineralization. These nanoparticles show a narrow size distribution and high colloidal stability. Nanogel‐adsorbed liposomes act as templates for hierarchical hybrid nanostructures. These nanohybrids can potentially be used as biocompatible drug carriers with controlled‐release properties.

TEM images of calcium phosphate nanoparticles formed in the presence of CHP nanogels (0.5 mg · mL−1) (left) and nanogel‐liposomes (CHP 0.05 mg · mL−1, DPPC 0.08 mg · mL−1)(right).  相似文献   


2.
Summary: Thiol‐reactive‐functionality decorated multi‐walled carbon nanotubes (MWNTs) have been obtained. Trithiocarbonate‐ended poly(N‐(2‐hydroxypropyl)methacrylamide) (PHPMA) is prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐(2‐hydroxypropyl)methacrylamide (HPMA) using S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate as chain transfer agent, subsequently, thiol‐terminated PHPMA (PHPMA‐SH) is obtained by treating trithiocarbonate‐ended PHPMA with hexylamine. The PHPMA‐S‐S‐MWNT conjugate is formed by simply stirring the mixture of thiol‐reactive‐functionality decorated MWNTs with PHPMA‐SH in phosphate buffered saline by a thiol‐coupling reaction. FT‐IR, HRTEM, 1H NMR, and TGA results show that this thiol‐coupling reaction is effective to produce aqueous soluble polymer–MWNT conjugates under mild conditions.

Thiol‐reactive‐functionality decorated multi‐walled carbon nanotubes are modified with thiol end‐capped polymers by a thiol‐coupling reaction.  相似文献   


3.
In this study, the hydrophobic liquid template method was firstly used to prepare temperature sensitive, porous poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel. During the radical polymerization, hydrophobic polydimethylsiloxane (PDMS) and surfactant sodium dodecyl sulfate (SDS) were used as liquid templates and stabilizer, respectively. After removal of the liquid templates, porous PNIPAAm hydrogel was obtained. This gel exhibited superfast shrinking properties when being transferred from below to above the lower critical solution temperature (LCST), which was ascribed to the interconnected porous structures.

  相似文献   


4.
The dextran‐allyl isocyanate/poly(N‐isopropylacrylamide) (Dex‐AI/PNIPAAm) hydrogel was designed and prepared by copolymerization of the modified dextran with N‐isopropylacrylamide (NIPAAm). This novel Dex‐AI/PNIPAAm hydrogel is biodegradable and intelligent due to its biodegradable dextran linkage and thermosensitive PNIPAAm moiety. With an increase in dextran content, it exhibits the increased lower critical solution temperature (LCST) and decreased porous microstructure. Also, the thermosensitivity of this hydrogel is also controllable and adjustable depending on the different compositions.

SEM micrographs of the Dex‐AI/PNIPAAm hydrogels.  相似文献   


5.
Summary: An enzymatic one‐pot procedure has been developed for the synthesis of difunctional polyesters containing terminal thiols and acrylates. Candida antarctica lipase B was used as a catalyst for the ring‐opening polymerization of ω‐pentadecalactone. The polymerization was initiated with 6‐mercaptohexanol, then terminated with γ‐thiobutyrolactone or vinyl acrylate to create two types of difunctional polyesters with a very high content of thiol‐thiol or thiol‐acrylate end‐groups.

Difunctionalization of poly‐PDL.  相似文献   


6.
Molecular dynamics simulations were carried out to investigate the structure of a gold‐nanoparticle including 169 Au atoms coated by 42 thiol terminated hydroquinonyl oligoether chains. Three nanoparticle systems were constructed and investigated for structural comparison. The simulation showed that in all three nanosystems thiol‐chains self‐assembled on the surface of the gold cluster to form a stable gold nanoparticle. The configurations of the thiol chains and stacking of the phenylene rings were analyzed. The thiol‐chains are bundled into groups. Each group contains no more than four chains, in which phenylene rings in the thiol‐chains are correlated in parallel and perpendicular forms. Simple quantum mechanical calculations are carried out to elucidate the correlation of the phenylene rings.

A snapshot of a TTOE‐Au nanoparticle.  相似文献   


7.
Rapidly shrinking poly(N‐isopropyl acrylamide) (PNIPAM) hydrogels are prepared by crosslinking with self‐assembled nanogels that consist of cholesteryl‐ and methacryloyl‐substituted pullulan (CHPMA). The CHPMA nanogel (Rh = 26.4 nm) was used as a crosslinker for a hydrophilic nanodomain. Transmission electron microscopy images of the nanogel‐crosslinked PNIPAM hydrogel reveal a well‐defined nanoporous structure. The nanogel‐crosslinked PNIPAM hydrogel shows rapid shrinking based on its structure. The shrinking half‐time was ≈2 min, which is about 3 400 times faster than that of a PNIPAM hydrogel crosslinked by methylene(bisacrylamide).

  相似文献   


8.
Nanogels consist of three dimensionally cross‐linked hydrophilic polymer chains and can thus be easily modified through functionalization of the polymeric building blocks, for example to yield stimuli‐sensitive materials. For drug transport and intracellular release, redox‐sensitive systems are especially of interest, as the intracellular space is reductive. In this study, parameters that allow preparation of nanogels with tunable size between 150 and 350 nm are systematically evaluated and identified. Most importantly, a new and mild oxidation catalyst, alloxan, is introduced for the preparation of the nanogels. This broadens the range of possible payloads to more‐sensitive molecules. Particle stability, degradation in cytosolic conditions, and cytocompatibility in concentrations up to 10 mg · mL?1 are demonstrated.

  相似文献   


9.
Highly branched cyclic dextrin derivatives (CH‐CDex) that are partly substituted with cholesterol groups have been synthesized. The CH‐CDex forms monodisperse and stable nanogels with a hydrodynamic radii of ≈10 nm by the self‐assembly of 4–6 CH‐CDex macromolecules in water. The CH‐CDex nanogels spontaneously trap 10–16 molecules of fluorescein isothiocyanate‐labeled insulin (FITC‐Ins). The complex shows high colloidal stability: no dissociation of trapped insulin is observed after at least 1 month in phosphate buffer (0.1 M , pH 8.0). In the presence of bovine serum albumin (BSA, 50 mg · mL?1), which is a model blood system, the FITC‐Ins trapped in the nanogels is continuously released (≈20% at 12 h) without burst release. The high‐density nanogel structure derived from the highly branched CDex significantly affects the stability of the nanogel–protein complex.

  相似文献   


10.
In this paper, self‐assembled polymeric toroids formed by a temperature‐driven process are reported. Rhodamine B (RhB) end‐capped poly(N‐isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two‐phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature‐driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self‐assembly of polymers. Moreover, the photoluminescent behavior of the RhB end‐capped PNIPAAm species formed by the process is also studied and discussed.

  相似文献   


11.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


12.
A functional coil–rod–coil triblock copolymer containing a terfluorene unit as the rigid segment and poly(N‐isopropylacrylamide) (PNIPAAm) as the flexible block was successfully synthesized via reversible addition–fragmentation chain‐transfer (RAFT) polymerization using terfluorene‐based dithioester as the RAFT agent. The temperature‐responsive optical properties were investigated with the aid of dynamic light scattering and fluorescence techniques. Additionally, the relationship between the optical properties and the reversible phase transition of the doping system formed by blending the copolymer with tetraphenylporphine tetrasulfonic acid was studied. Above the lower critical solution temperature, the energy transfer efficiency decreased as a result of the globule–to–coil transition from PNIPAAm segments. The result indicates that these copolymers have a potential to be used as responsive fluorescent probes in facile detection of dye‐labeled biopolymers.

  相似文献   


13.
An efficient and simple synthesis approach to form stable 68Ga‐labeled nanogels is reported and their fundamental properties investigated. Nanogels are obtained by self‐assembly of amphiphilic statistical prepolymers derivatised with chelating groups for radiometals. The resulting nanogels exhibit a well‐defined spherical shape with a diameter of 290 ± 50 nm. The radionuclide 68Ga is chelated in high radiochemical yields in an aqueous medium at room temperature. The phagocytosis assay demonstrates a highly increased internalization of nanogels by activated macrophages. Access to these 68Ga‐nanogels will allow the investigation of general behavior and clearance pathways of nanogels in vivo by nuclear molecular imaging.

  相似文献   


14.
We present an efficient method for functionalizing the large polymer–air interface of a gyroid nanoporous polymer. The hydrophilicity of nanoporous cross‐linked 1,2‐polybutadiene is tuned by thiol‐ene photo‐grafting of mercaptosuccinic acid or sodium 2‐mercaptoethanesulfonate. The reaction is monitored by FT‐IR, UV–Vis, contact angle, and gravimetry. Overall quantum yields are calculated for the two thiol‐ene “click” reactions in nano‐confinement, neatly revealing their chain‐like nature. Top–down photolithographic patterning is demonstrated, realizing hydrophilic nanoporous “corridors” exclusively hosting water. The presented approach can be relevant for many applications where, e.g., high control and contrast in hydrophilicity, chemical functionality or refractive index are needed.

  相似文献   


15.
The bulk polymerization of 2‐(dec‐9‐enyl)‐2‐oxazoline ( DecEnOx ), a fatty acid‐based monomer for the cationic ring‐opening polymerization, is reported. Furthermore, under optimal conditions, namely microwave heating at 100 °C, the bulk copolymerization with 2‐ethyl‐2‐oxazoline yielded well‐defined copolymers. Due to its pendant alkene groups DecEnOx ‐based polymers possess the potential to be modified in efficient thiol‐ene reactions. The functionalization with thiols, e.g., dodecanethiol and 2,3,4,6‐tetra‐O‐acetyl‐1‐thio‐β‐D ‐glycopyranose in “green” solvents is demonstrated.

  相似文献   


16.
Enzyme‐loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer‐by‐layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery.

  相似文献   


17.
3‐D rose‐like microstructures of polyaniline (PANI), which are self‐assembled from 2‐D nanosheets consisted of 1‐D nanofibers, were synthesized by a template‐free method in the presence of ammonium peroxydisulfate (APS) as both oxidant and dopant under a high relative humidity of 80% for the first time. When the relative humidity increases from 25 to 80%, not only morphology of the micro/nanostructured PANI undergoes a change from 1‐D nanofibers to 2‐D nanosheets to 3‐D rose‐like microstructures, but also increase in crystallinity. It is proposed that a cooperation effect of the oriented water molecules at the vapor–water interface and difference in hydrogen bonding energies between the interface and the bulk induced by the relative high humidity results in the formation of the 3‐D rose‐like microstructures self‐assembled from 2‐D nanosheets. Moreover, the method reported may provide a simple approach for understanding self‐assembly of complex micro/nanostructures of PANI.

  相似文献   


18.
19.
A polymeric film of a biodegradable poly(p‐dioxanone) was grown from 490 nm silica particles by monolayer formation via self‐assembly of hydroxy‐terminated triethoxysilane and subsequent surface‐initiated ring‐opening polymerization of p‐dioxanone. The resulting silica/poly(p‐dioxanone) hybrid particles were characterized by means of 1H NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, field‐emission scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy.

  相似文献   


20.
Two kinds of representative polymers, poly(N‐isopropylacrylamide) (PNIPAAm) and β‐cyclodextrin (β‐CD) were selected and modified with azide and alkyne fucntional groups, respectively. When the solutions of these two modified polymers were mixed together, a cross‐linking reaction, a type of Huisgen's 1,3‐dipolar azide‐alkyne cycloaddition, occurred in the presence of Cu(I) catalyst. The strategy described here provides several advantages for the hydrogel formation including mild reaction conditions and controllable gelation rate. The resulted hydrogels were studied in terms of scanning electric microscopy (SEM), equilibrium swelling ratio and swelling/shrinking kinetics. The data obtained demonstrated the hydrogels had a porous structure as well as favorable thermosensitivity.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号