首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel tetra‐armed microporous organic polymers have been designed and synthesized via a nickel‐catalyzed Yamamoto‐type Ullmann cross‐coupling reaction or Suzuki cross‐coupling polycondensation. These polymers are stable in various solvents, including concentrated hydrochloric acid, and are thermally stable. The homocoupled polymer YPTPA shows much higher Brunauer–Emmet–Teller‐specific surface area up to 1557 m2 g−1 than the copolymer SPTPA (544 m2 g−1), and a high CO2 uptake ability of 3.03 mmol g−1 (1.13 bar/273 K) with a CO2/N2 sorption selectivity of 17.3:1. Both polymers show high isosteric heats of CO2 adsorption (22.7–26.5 kJ mol−1) because the incorporation of nitrogen atoms into the skeleton of microporous organic polymers enhances the interaction between the pore wall and the CO2 molecules. The values are higher than those of the porous aromatic frameworks, which contain neither additional polar functional groups nor nitrogen atoms, and are rather close to those of previously reported microporous organic polymers containing the nitrogen atoms on the pore wall. These data show that these materials would be potential candidates for applications in post‐combustion CO2 capture and sequestration technology.

  相似文献   


2.
Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine‐bridged heptazine moieties and showed interesting performance as a metal‐free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine‐based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination.

  相似文献   


3.
4.
李晶晶  樊江莉  彭孝军 《应用化学》2018,35(9):1026-1036
细乳液聚合能够将多种材料封装在聚合物壳层中形成结构复杂的聚合物纳米颗粒。 与普通乳液聚合技术相比,细乳液聚合具有方便、环保、粒径可控、稳定性高等优点。 通过引入功能单体,可以很容易地实现对纳米颗粒的功能化。 目前,细乳液聚合技术已经应用于很多领域,如纺织颜料的合成、粘接剂、分子印迹、磁性靶向纳米颗粒等。 本文综述了近年关于细乳液聚合法合成纳米颗粒的各种应用。  相似文献   

5.
Local depletion of intestinal phosphate triggers changes in bacterial phenotypes that adversely affect the health of the host. This article describes a process for encapsulating phosphates in crosslinked poly(ethylene glycol) diacrylate (PEGDA) nanoparticles using inverse miniemulsion polymerization as a drug delivery approach for sustained release of phosphates to the intestinal epithelium. The effects of crosslinker, PEGDA co‐monomer, N‐vinyl pyrrolidone, (NVP) and surfactant concentrations on the nanoparticle size distribution, swelling ratio and monomer conversion are investigated. Increased surfactant and PEGDA concentrations result in smaller particle size and swelling ratio. A copolymerization model of crosslinking is used to predict conversion and gelation dynamics as a function of polymerization conditions. The model assumes that bulk polymerization can be used to approximate inverse miniemulsion polymerization with an aqueous‐phase initiator. The initiator efficiency is used as an adjustable parameter to simulate the conversion dynamics, thus accounting for radical confinement effects and interaction with emulsifier molecules.  相似文献   

6.
A modified one‐pot Sonogashira cross‐coupling reaction based on a copper‐free methodology has been applied for the synthesis of conjugated microporous poly(aryleneethynylene) networks (CMPs) from readily available iodoarylenes and 1,3,5‐triethynylbenzene. The polymerization reactions were carried out by using equimolar amounts of halogen and terminal alkyne moieties with extremely small loadings of palladium catalyst as low as 0.65 mol %. For the first time, CMPs with rigorously controlled structures were obtained without any indications of side reactions, as proven by FTIR and solid‐state NMR spectroscopy, while showing Brunauer–Emmett–Teller (BET) surface areas higher than any poly(aryleneethynylene) network reported before, reaching up to 2552 m2 g?1.  相似文献   

7.
Summary: The present paper analyzes the production of poly(methyl methacrylate) – PMMA – nanoparticles loaded with benzophenone-3 through miniemulsion polymerization. The obtained product is homogeneous and stable, allowing for preparation of photo-protective formulations. It is observed in particular that bezophenone-3 interacts with the reacting system, promoting the growth of the PMMA chains produced in miniemulsion.  相似文献   

8.
The synthesis of two‐dimensional (2D) polymer nanosheets with a well‐defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4‐dicyanobenzene in molten zinc chloride at 400–500 °C. This type of nanosheets has a thickness in the range of 3–20 nm, well‐defined microporosity, a high surface area (~537 m2 g?1), and a large micropore volume (~0.45 cm3 g?1). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein.  相似文献   

9.
10.
Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium‐doped naphthyl‐containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol?1 and the methyllithium‐doped naphthyl‐containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl‐containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target.  相似文献   

11.
A mathematical model has been developed to describe the interfacial mass transfer of TEMPO in a nitroxide‐mediated miniemulsion polymerization (NMMP) system in the absence of chemical reactions. The model is used to examine how the diffusivity of TEMPO in the aqueous and organic droplet phases, the average droplet diameter and the nitroxide partition coefficient influences the time required for the nitroxide to reach phase equilibrium under non‐steady state conditions. Our model predicts that phase equilibrium is achieved quickly (< 1 × 10−4 s) in NMMP systems under typical polymerization conditions and even at high monomer conversions when there is significant resistance to molecular diffusion. The characteristic time for reversible radical deactivation by TEMPO was found to be more than ten times greater than the predicted equilibration times, indicating that phase equilibrium will be achieved before TEMPO has an opportunity to react with active polymer radicals. However, significantly longer equilibration times are predicted, when average droplet diameters are as large as those typically found in emulsion and suspension polymerization systems, indicating that the aqueous and organic phase concentrations of nitroxide may not always be at phase equilibrium during polymerization in these systems.

Influence of droplet phase TEMPO diffusivity, DTEMPO,drop, on the predicted organic phase concentration of TEMPO.  相似文献   


12.
Soluble conjugated polymeric nanoparticles were synthesized through Sonogashira polycondensation between different combinations of multifunctional alkynes and aryl halides in structurally well‐defined mesoporous reactors. The growth of the polymeric nanoparticles was controlled by the spatial confinement of the nanoreactors, giving conjugated polymeric nanoparticles with narrow size distribution centered at 5 nm. All the obtained polymers are freely soluble in common solvents and can be fabricated into thin film. Both of the solution and thin film prepared from these polymeric nanoparticles were highly fluorescent, endowing them potential applications in light emitting and other optoelectronic fields. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2285–2290  相似文献   

13.
Polyphosphate salts, such as sodium hexametaphosphate (PPi), are effective in the attenuation of collagenase and biofilm production and prevention of anastomotic leak in mice models. However, systemic administration of polyphosphate solutions to the gut presents a series of difficulties such as uncontrolled delivery to target and off‐site tissues. In this article a process to produce PPi‐loaded poly(ethylene glycol) diacrylate (PEGDA) hydrogel nanoparticles through miniemulsion polymerization is developed. The effects of using a polyphosphate salt, as compared to a monophosphate salt, is investigated through cloud point measurements, which is then translated to a change in the required HLB of the miniemulsion system. A parametric study is developed and yields a way to control particle swelling ratio and mean diameter based on the surfactant and/or initiator concentration, among other parameters. Finally, release kinetics of two different crosslink density particles shows a sustained and tunable release of the encapsulated polyphosphate.  相似文献   

14.
15.
Here, a novel method is demonstrated for the preparation of three‐arm branched microporous organic nanotube networks (TAB‐MONNs) based on molecular templating of three‐arm branched core–shell bottlebrush copolymers and Friedel–Crafts alkylation reaction. The unique three‐arm branched bottlebrush copolymers are synthesized by a combination of atom transfer radical polymerization, reversible addition‐fragmentation chain transfer polymerization, and ring‐opening polymerization techniques. In this approach, the length and diameter of branched tube units can be well‐controlled by rational molecular design. Moreover, the as‐prepared TAB‐MONNs possess a high surface area and exhibit a superior adsorption capacity for Rhodamine 6G (R6G) and p‐cresol.

  相似文献   


16.
17.
18.
Latexes of poly(n‐butyl acrylate‐co‐methyl methacrylate) [P(BA‐co‐MMA)] filled with magnesium–aluminum layered double hydroxides (MgAl‐LDHs) are synthesized using miniemulsion polymerization. Three commercial LDHs organically modified with different types of anions are used as fillers (Perkalite F100S, Perkalite A100, and Perkalite AF50) and three different types of surfactants are tested to stabilize the miniemulsions including a cationic, an anionic, and a nonionic one. Stable LDH‐containing miniemulsions are prepared with a mixture of sodium dodecyl sulfate and Triton X‐405 and the polymerizable co‐stabilizer octadecyl acrylate. They are then polymerized to yield nanocomposite latexes. Depending on the type of LDH used, the presence of the inorganic material in the reaction medium affects the polymerization kinetics. X‐ray diffraction analysis of the resulting nanocomposite films suggests exfoliation of the inorganic material. The glass transition temperature of the nanocomposites is not affected by the LDHs and the decomposition temperature of the nanocomposites determined by thermogravimetric analysis is greater than that of the pure polymer.  相似文献   

19.
20.
Nitrogen‐enriched porous nanocarbon, graphene, and conductive polymers attract increasing attention for application in supercapacitors. However, electrode materials with a large specific surface area (SSA) and a high nitrogen doping concentration, which is needed for excellent supercapacitors, has not been achieved thus far. Herein, we developed a class of tetracyanoquinodimethane‐derived conductive microporous covalent triazine‐based frameworks (TCNQ‐CTFs) with both high nitrogen content (>8 %) and large SSA (>3600 m2 g?1). These CTFs exhibited excellent specific capacitances with the highest value exceeding 380 F g?1, considerable energy density of 42.8 Wh kg?1, and remarkable cycling stability without any capacitance degradation after 10 000 cycles. This class of CTFs should hold a great potential as high‐performance electrode material for electrochemical energy‐storage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号