首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the development of a new method for online characterization of polymers, termed Continuous Online Rapid Size‐Exclusion chromatography Monitoring of Polymerizations (CORSEMP). It consists of automatic samplings, dilutions and injections every 12 min of polymers synthesized in continuous flow. The system allows molecular weight and molecular weight distribution of polymers to be monitored ‘near real‐time’ by means of a chromatographic column. This technique is well adapted to assessment of the effects of stepwise modifications of operating conditions over the dynamics of the reactor by running high‐throughput experiments and shows itself to be a convenient tool for polymer library synthesis.

  相似文献   


2.
Summary: The first example of a room temperature reversible addition‐fragmentation chain transfer polymerization conducted directly in aqueous media is detailed. Under these conditions acrylamide and N,N‐dimethylacrylamide may be polymerized in a controlled fashion to near quantitative conversions employing a difunctional trithiocarbonate chain transfer agent (CTA). Hydrolysis studies conducted at pH 5.5 suggest that the CTA is stable up to approximately 50 °C.

  相似文献   


3.
Well‐defined glycidyl methacrylate (GMA) based di‐ and triblock copolymers, with self‐activation and self‐initiation behaviors by incorporation of 2‐(diethylamino) ethyl methacrylate (DEA) blocks, were synthesized via ambient temperature atom transfer radical polymerization (ATRP). The stability of the GMA pendant oxirane rings in tertiary amine environments at ambient temperature was investigated. More importantly, both self‐activation behavior in oxirane ring opening addition reaction and self‐initiation behavior in post‐cure oxirane ring opening crosslinking of these block copolymers were evidenced by 1H NMR studies. The results demonstrated that the reactivity of pendent oxirane rings was strongly dependant on the nucleophilicity and steric hindrance of tertiary amine moieties and temperature. This facilitated the synthesis of well‐defined block copolymers of GMA and DEA via sequential monomer addition ATRP, particularly for polymerization of GMA monomer at ambient temperature. Moreover, these one‐component GMA based block polymers have novel self‐activation and self‐initiation properties, rendering some potential applications in both enzyme immobilization and GMA‐based thermosetting materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2947–2958, 2007  相似文献   

4.
Summary: This article reviews some recent developments on the determination of the Band Broadening Function (BBF) in Size Exclusion Chromatography (SEC) of polymers. It was carried out in the frame of the IUPAC Project: “Data Treatment in Size Exclusion Chromatography of Polymers”. The correction for band broadening (BB) is important for quantitative determinations of the molar mass distribution (MMD) of narrow-distributed (or highly multimodal) polymers, and of derived variables such as kinetic parameters. In the narrow range of a molar mass standard, the BBF is uniform and of positive skewness. In a broad chromatographic range, the BBF is non-uniform and skewed; and it can be adequately represented by an exponentially-modified Gaussian function (EMG) of 2 parameters that vary slightly with elution volume: an increasing Gaussian variance and a decreasing exponential decay. Additionally, the total BBF variance remains almost constant if not close to the total exclusion limit. The following methods for determining BBF parameters are reviewed: a) a direct method based on assuming Poisson-distributed MMDs; b) a direct method based on measuring the mass- and molar mass chromatograms of narrow standards; c) a theoretical method based on a stochastic model that is equivalent to the Giddings-Eyring model; and d) a theoretical method based on a deterministic model obtained through an extension of the classical van Deemter expression. Ideally, the correction for BB requires a robust numerical inversion algorithm. However, alternative simplified solutions are also possible.  相似文献   

5.
The determination of molecular weight and correlated chemical composition is of major interest for the advanced analysis of copolymers, blends, or unknown samples. In this work, we present a new way of online coupling IR spectroscopy and SEC to achieve a chemically sensitive, universally applicable SEC detector. Our method overcomes the limitations of existing spectroscopy–SEC combinations. We solved the major problems, like huge intensity of solvent signals (polymer concentration in detector <1 g L−1) and short measuring time (<30 s), by recording the IR spectra with fully optimized sensitivity and by following mathematical solvent suppression. The measuring time for a certain S/N was reduced in several optimization steps by a factor of more than 70 000. The resulting sensitivity allows online coupled IR–SEC measurements.  相似文献   

6.
A gel permeation chromatography (GPC) calculation method has been developed to determine the absolute molecular weight of a star‐shaped styrenic block copolymer with GPC–ultraviolet/refractive index calibrated with linear polystyrene standards. To illustrate the simplicity of this method, we have synthesized nearly monodisperse, multiple‐arm model polymers either by linking living polymeric arms with multifunctional silicon halide or by oligomerizing the p‐chloromethylstyrene‐terminated polystyrene macromonomers. The good agreement between the absolute molecular weight determined with this calculation method and that actually measured with a multi‐angle laser light scattering device has corroborated the validity of the calculation method. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 976–983, 2003  相似文献   

7.
Liquid chromatography at the critical condition (LCCC) is a high performance liquid chromatography (HPLC) technique that lies between size exclusion chromatography and adsorption-based interaction chromatography, where the elution of polymers becomes independent of polymer molecular weight. At LCCC, the balance between the entropic exclusion and the enthalpic adsorption interactions between polymers and stationary phases results in the simultaneous HPLC elution of polymers regardless of molecular weight. Using C18-bonded silica chromatographic columns with 5 μm particle size and different average pore size (diameter = 300 Å, 120 Å, 100 Å, and 50 Å), we report (1) the thermodynamic significance of LCCC conditions and (2) the influence of column pore size on the determination of critical conditions for linear polymer chains. Specifically, we used mixtures of monodisperse polystyrene samples ranging in molecular weight from 162 to 371,100 g/mol and controlled the temperature of the HPLC columns at a fixed composition of a mobile phase consisting of 57(v/v)% methylene chloride and 43(v/v)% acetonitrile. It was found that, at the fixed mobile phase composition, the temperature of LCCC (TLCCC) is higher for C18-bonded chromatographic columns with larger average pore size. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2533–2540, 2009  相似文献   

8.
A novel dinitroxide mediating agent that was suitable for stable free‐radical polymerization was synthesized and used in the block copolymerization of styrene and t‐butyl styrene. Quantitative yields of a novel dinitroxide based on 1,6‐hexamethylene diisocyanate and 4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy were obtained. Various experimental parameters, including the nitroxide‐to‐initiator molar ratio, were examined, and it was determined that the polymerization was most controlled under conditions similar to those of conventional 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐mediated stable free‐radical polymerization. Moreover, the dinitroxide mediator proved to be a viable route for the facile two‐step synthesis of triblock copolymers of styrene and t‐butyl styrene. However, the dinitroxide mediation process resulted in a higher than expected level of nitroxide decomposition, which resulted in polymers possessing a terminal alkoxyamine and an adjacent hydroxylamine rather than a preferred internal bisalkoxyamine. This decomposition resulted in the formation of diblock copolymer species during the triblock copolymer synthesis. Gel permeation chromatography was used to monitor the chain‐end decomposition kinetics, and the determined observed rate constant (5.89 × 10?5 s?1) for decomposition agreed well with previous studies for other dinitroxide mediating agents. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1547–1556, 2004  相似文献   

9.
Montmorillionite K10 powder presence during radically initiated copolymerization of methyl acrylate (M) and 1‐octene (O) gave copolymers with higher incorporation of alkene unit. Highly viscous and transparent copolymers showed alternation irrespective of the copolymer composition. Increasing the amount of K10 powder increased the total percentage conversion, as well as 1‐octene incorporation. The monomodal curves obtained in gel permeation chromatography (GPC) substantiated that true copolymers were formed. The alternation in the copolymers was authenticated through Heteronuclear Multiple Quantum Correlation (HMQC) experiments in conjugation with Total Correlated Spectroscopy (TOCSY). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2156–2162, 2009  相似文献   

10.
Low‐molecular weight amphiphilic diblock copolymers, polystyrene‐block‐poly (2‐vinylpyridine) (PS‐b‐P2VP), and (P2VP‐b‐PS) with different block ratios were synthesized for the first time via organotellurium‐mediated living radical polymerization (TERP). For both the homo‐ and block copolymerizations, good agreement between the theoretical, and experimental molecular weights was found with nearly 100% yield in every case. The molecular weight distribution for all the samples ranged between 1.10 and 1.24, which is well below the theoretical lower limit of 1.50 for a conventional free radical polymerization. Furthermore, a very simple approach to producing highly dense arrays of titania nanoparticles (TiO2) is presented using a site‐selective reaction of titanium tetraisopropoxide within the P2VP domains of micellar film of P2VP‐b‐PS in toluene through the sol–gel method.

  相似文献   


11.
Among three cyclopentadienyl titanium complexes studied, CpTiCl2(OEt), containing a 5% excess CpTiCl3, has proven to be a very efficient catalyst for the ring‐opening polymerization (ROP) of L ‐lactide (LLA) in toluene at 130 °C. Kinetic studies revealed that the polymerization yield (up to 100%) and the molecular weight increase linearly with time, leading to well‐defined PLLA with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Based on the above results, PS‐b‐PLLA, PI‐b‐PLLA, PEO‐b‐PLLA block copolymers, and a PS‐b‐PI‐b‐PLLA triblock terpolymer were synthesized. The synthetic strategy involved: (a) the preparation of OH‐end‐functionalized homopolymers or diblock copolymers by anionic polymerization, (b) the reaction of the OH‐functionalized polymers with CpTiCl3 to give the corresponding Ti‐macrocatalyst, and (c) the ROP of LLA to afford the final block copolymers. PMMA‐g‐PLLA [PMMA: poly(methyl methacrylate)] was also synthesized by: (a) the reaction of CpTiCl3 with 2‐hydroxy ethyl methacrylate, HEMA, to give the Ti‐HEMA‐catalyst, (b) the ROP of LLA to afford a PLLA methacrylic‐macromonomer, and (c) the copolymerization (conventional and ATRP) of the macromonomer with MMA to afford the final graft copolymer. Intermediate and final products were characterized by NMR spectroscopy and size exclusion chromatography, equipped with refractive index and two‐angle laser light scattering detectors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1092–1103, 2010  相似文献   

12.
Atom transfer radical polymerization conditions were optimized and standardized with different initiator and catalyst systems. Acrylonitrile/n‐butyl acrylate copolymers were synthesized with 2‐bromopropionitrile as the initiator and CuCl/Cu(0)/2,2′‐bipyridine as the catalyst system. Variations of the feed composition led to copolymers with different compositions. The number‐average molecular weight and the polydispersity index were determined by gel permeation chromatography. Quantitative 13C{1H} NMR was employed to determine the copolymer composition. The reactivity ratios calculated with a methodology based on the Mao–Huglin terminal model were rA = 1.30 and rB = 0.68 for acrylonitrile and n‐butyl acrylate, respectively. The reactivity ratios determined by the modified Kelen–Tudos method were rA = 1.29 ± 0.01 and rB = 0.67 ± 0.01. 13C{1H} NMR and distortionless enhancement by polarization transfer (DEPT‐45, 90, and 135) were used to distinguish methyl, methylene, methine, and quaternary carbon resonance signals. The overlapping and broad signals of the copolymers were assigned completely to various compositional and configurational sequences by the correlation of one‐dimensional (1H, 13C{1H}, and DEPT) and two‐dimensional (heteronuclear single quantum coherence, total correlation spectroscopy, and heteronuclear multibond correlation) NMR spectral data. The complete spectral assignments of carbonyl and nitrile carbons were performed with the help of heteronuclear multibond correlation spectra. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2810–2825, 2005  相似文献   

13.
A novel high performance liquid chromatographic (HPLC) method viz. “enthalpic partition assisted size exclusion chromatography” deliberately combines entropic and enthalpic partition mechanisms. It enables separation of homopolymers according to their molar mass with increased selectivity, as well as discrimination of polymer species differing in their nature/composition. Enthalpic partition of macromolecules takes place between the mobile phase and the stationary “liquid” of a different chemical nature, which is immobilized within pores of an appropriate carrier (a bonded phase). The extent of enthalpic partition depends on the accessibility of bonded phase for macromolecules and on the difference of polymer solubility in the mobile phase and in the solvated bonded phase. The enthalpic partition in favor of column packing arises from better solubility of polymer solutes in the solvated stationary phase compared to the mobile phase. Macromolecules are “pushed” into the solvated stationary phase and their retention volumes (VR) increase. In the area of high molar masses, the extent of enthalpic partition as rule raises with the increasing size of macromolecules. However, under properly chosen experimental conditions the enthalpic partition may rapidly diminish with the sample molar mass (M), likely due to the solubility changes and/or due to partial exclusion of macromolecules from the pores. As result, the corresponding retention volumes sharply drop within a narrow range of M with the increasing size of macromolecules. This results in the log M vs. VR dependences, which resemble in their form that for size exclusion chromatography but are much more flat indicating highly selective separations of homopolymers according to their molar masses. In this way, enthalpic partition “assists” entropic partition (size exclusion). Polymer species, which do not undergo enthalpic partition, elute from the HPLC column in the conventional size exclusion mode and can be discriminated from the partitioning species. Enthalpic partition assisted size exclusion chromatography can be utilized in separation and characterization of various homopolymers, and polymer blends.  相似文献   

14.
Poly(dimethylsiloxane)‐containing diblock and triblock copolymers were prepared by the combination of anionic ring‐opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) and nitroxide‐mediated radical polymerization (NMRP) of methyl acrylate (MA), isoprene (IP), and styrene (St). The first step was the preparation of a TIPNO‐based alkoxyamine carrying a 4‐bromophenyl group. The alkoxyamine was then treated with Li powder in ether, and AROP of D3 was carried out using the resulting lithiophenyl alkoxyamine at room temperature, giving functional poly(D3) with Mw/Mn of 1.09–1.16. NMRPs of MA, St, and IP from the poly(D3) at 120 °C gave poly(D3b‐MA), poly(D3b‐St), and poly(D3b‐IP) diblock copolymers, and subsequent NMRPs of St from poly(D3b‐MA) and poly(D3b‐IP) at 120 °C gave poly(D3b‐MA‐b‐St) and poly(D3b‐IP‐b‐St) triblock copolymers. The poly(dimethylsiloxane)‐containing diblock and triblock copolymers were analyzed by 1H NMR and size exclusion chromatography. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6153–6165, 2005  相似文献   

15.
16.
A multidimensional distribution function is defined to describe the branching structure of branched homopolymers such as starch and polyacrylates. Averages of this function give distributions which can be measured using, for example, the number and weight distributions as a function of hydrodynamic volume from size‐exclusion chromatography and field‐flow fractionation, and two‐dimensional separation methods. This provides means to plot data to obtain physically meaningful quantities, and to test mechanistic postulates for the (bio)synthesis, of branched polymers. A simple enzyme‐kinetic model for a reduced form of this multidimensional distribution for starch biosynthesis is derived and solved. One application is to derive number distributions for the molecular weight distribution of debranched glycogen. Fitting this to experiment gives estimates of this ratio for two forms of glycogen. We propose that number distributions from size separation for starch (which, it is pointed out, are obtained directly from in‐line viscometric detection) have a simple and meaningful form when plotted as ln(number distribution) against Vhp, where Vh is hydrodynamic volume, and p a parameter of order unity determined from multiple‐detection size separation measurements. The new function is also used to propose a two‐dimensional experiment which can yield an unambiguous measurement of the amylose: amylopectin ratio in starch. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3914–3930, 2009  相似文献   

17.
Terpolymers of acrylonitrile (A), methyl methacrylate (B), and methyl acrylate (M) were synthesized under optimized atom transfer radical polymerization conditions using 2‐bromopropionitrile as an initiator and CuBr/dinonyl bipyridine as a catalyst. Variation of the feed composition led to terpolymers with different compositions. Composition of synthesized terpolymers were calculated from quantitative 13C{1H} NMR spectra. Number average molecular weight and polydispersity index were determined by gel permeation chromatography. The overlapping and broad signals of the terpolymers were assigned completely to various compositional and configurational sequences by correlation of one‐dimensional 1H, 13C{1H}, and distortionless enhancement by polarization transfer and two‐dimensional heteronuclear single quantum coherence (HSQC) and total correlation spectroscopy (TOCSY). 2D HSQC NMR study shows one to one correlation between carbon and proton signals, while 2D TOCSY spectra were used to confirm 1, 2 bond geminal couplings between nonequivalent protons of same methylene group. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 25–37, 2009  相似文献   

18.
The hyphenation of chromatographic separation techniques with NMR spectroscopy is one of the most powerful and time-saving methods for the separation and structural elucidation of unknown compounds and molecular compositions of mixtures. Most of the routinely used NMR flow-cells have detection volumes between 40–180 μL for conventional separations with analytical columns, and the newest designs employ detection volumes in the order of 200 nL for capillary separations. The low flow rates used in capillary chromatography permit the use of deuterated solvents. Unequivocal structural assignment of unknown chromatographic peaks is possible by two-dimensional stopped-flow capillary HPLC-NMR experiments.  相似文献   

19.
20.
Copolymerization of acrylonitrile and ethyl methacrylate using atom transfer radical polymerization (ATRP) at ambient temperature was carried out under optimized reaction conditions using 2‐bromopropionitrile as initiator and CuBr/2,2′‐bipyridine as the catalyst system. The copolymer composition, obtained from 1H NMR spectra, were used to determine the monomer reactivity ratios (rA = 0.68 and rE = 1.75) involved in ATRP. Two‐dimensional NMR (heteronuclear single quantum correlation and total correlated spectroscopy) experiments were employed to resolve the highly overlapping and complex 1H and 13C{1H} NMR spectra of copolymers. The complete spectral assignments of the quaternary carbons viz. carbonyl and nitrile carbons were done with the help of heteronuclear multiple bond correlation spectra. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2955–2971, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号