共查询到20条相似文献,搜索用时 31 毫秒
1.
Gordana Stanojevi Djordje Medarevi Ivana Adamov Nikola Pei Jovana Kova
evi Svetlana Ibri 《Molecules (Basel, Switzerland)》2021,26(1)
Various three-dimensional printing (3DP) technologies have been investigated so far in relation to their potential to produce customizable medicines and medical devices. The aim of this study was to examine the possibility of tailoring drug release rates from immediate to prolonged release by varying the tablet thickness and the drug loading, as well as to develop artificial neural network (ANN) predictive models for atomoxetine (ATH) release rate from DLP 3D-printed tablets. Photoreactive mixtures were comprised of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) 400 in a constant ratio of 3:1, water, photoinitiator and ATH as a model drug whose content was varied from 5% to 20% (w/w). Designed 3D models of cylindrical shape tablets were of constant diameter, but different thickness. A series of tablets with doses ranging from 2.06 mg to 37.48 mg, exhibiting immediate- and modified-release profiles were successfully fabricated, confirming the potential of this technology in manufacturing dosage forms on demand, with the possibility to adjust the dose and release behavior by varying drug loading and dimensions of tablets. DSC (differential scanning calorimetry), XRPD (X-ray powder diffraction) and microscopic analysis showed that ATH remained in a crystalline form in tablets, while FTIR spectroscopy confirmed that no interactions occurred between ATH and polymers. 相似文献
2.
《Mendeleev Communications》2022,32(2):228-230
For the first time, complex geometry combustible structures of an ammonium perchlorate–polylactic acid composite have been successfully printed using fused deposition modeling (FDM). The structural and energetic capabilities of the printed structures are demonstrated. Combined with the ability to be produced by FDM printing, these combustible elements could afford many practical applications. 相似文献
3.
Felix Burkhardt Carl G. Schirmeister Christian Wesemann Massimo Nutini Stefano Pieralli Erik H. Licht Marc Metzger Frederik Wenz Rolf Mülhaupt Benedikt C. Spies 《Molecules (Basel, Switzerland)》2020,25(24)
A polyolefin with certified biocompatibility according to USP class VI was used by our group as feedstock for filament-based 3D printing to meet the highest medical standards in order to print personal protective equipment for our university hospital during the ongoing pandemic. Besides the chemical resistance and durability, as well as the ability to withstand steam sterilization, this polypropylene (PP) copolymer is characterized by its high purity, as achieved by highly efficient and selective catalytic polymerization. As the PP copolymer is suited to be printed with all common printers in fused filament fabrication (FFF), it offers an eco-friendly cost–benefit ratio, even for large-scale production. In addition, a digital workflow was established focusing on common desktop FFF printers in the medical sector. It comprises the simulation-based optimization of personalized print objects, considering the inherent material properties such as warping tendency, through to validation of the process chain by 3D scanning, sterilization, and biocompatibility analysis of the printed part. This combination of digital data processing and 3D printing with a sustainable and medically certified material showed great promise in establishing decentralized additive manufacturing in everyday hospital life to meet peaks in demand, supply bottlenecks, and enhanced personalized patient treatment. 相似文献
4.
Stphane Roulon Ian Soulairol Maxime Cazes Lna Lemierre Nicolas Payre Laurent Delbreilh Jean Ali 《Molecules (Basel, Switzerland)》2021,26(10)
Fused filament fabrication (FFF) is a process used to manufacture oral forms adapted to the needs of patients. Polyethylene oxide (PEO) filaments were produced by hot melt extrusion (HME) to obtain a filament suitable for the production of amiodarone hydrochloride oral forms by FFF 3D printing. In order to produce personalized oral forms adapted to the patient characteristics, filaments used by FFF must be controlled in terms of mass homogeneity along filament. This work highlights the relation between filament mass homogeneity and its diameter. This is why the impact of filler excipients physical properties was studied. It has been showed that the particle’s size distribution of the filler can modify the filament diameter variability which has had an impact on the mass of oral forms produced by FFF. Through this work it was shown that D-Sorbitol from Carlo Erba allows to obtain a diameter variability of less than 2% due to its unique particle’s size distribution. Using the filament produced by HME and an innovating calibration method based on the filament length, it has been possible to carry out three dosages of 125 mg, 750 mg and 1000 mg by 3D printing with acceptable mass uniformity. 相似文献
5.
Petre Badica Nicolae Dan Batalu Mariana Carmen Chifiriuc Mihail Burdusel Mihai Alexandru Grigoroscuta Gheorghe Virgil Aldica Iuliana Pasuk Andrei Kuncser Marcela Popa Angelo Agostino Lorenza Operti Santanu Kumar Padhi Valentina Bonino Marco Truccato 《Molecules (Basel, Switzerland)》2021,26(19)
Pristine high-density bulk disks of MgB2 with added hexagonal BN (10 wt.%) were prepared using spark plasma sintering. The BN-added samples are machinable by chipping them into desired geometries. Complex shapes of different sizes can also be obtained by the 3D printing of polylactic acid filaments embedded with MgB2 powder particles (10 wt.%). Our present work aims to assess antimicrobial activity quantified as viable cells (CFU/mL) vs. time of sintered and 3D-printed materials. In vitro antimicrobial tests were performed against the bacterial strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Enterococcus faecium DSM 13590, and Enterococcus faecalis ATCC 29212; and the yeast strain Candida parapsilosis ATCC 22019. The antimicrobial effects were found to depend on the tested samples and microbes, with E. faecium being the most resistant and E. coli the most susceptible. 相似文献
6.
In order to develop a new kind of filament material for the fused deposition modeling (FDM) 3D printing, the residue of Astragalus (ROA), one of the most important Chinese herbal medicines, and polylactic acid were chosen as the raw materials to FDM 3D print biomass composite specimens, the effects of the printing parameters on the properties of the specimens were investigated. The results indicated that the mechanical properties and thermal stability of the printed specimen were affected obviously by the parameters while the melting and crystallization behavior of the specimens were little affected. For the wettability, it was also little affected by the printing parameter except for the printing speed. Increasing the printing temperature and the filling density or reducing the printing speed and the layer thickness could improve both the mechanical properties and the thermal stability of the FDM 3D printed PLA/ROA composite specimen; reducing the deposition angle could also improve the mechanical properties while having little effect on the thermal stability of the specimen. 相似文献
7.
Numerical characterization of ultraviolet ink fluid agglomeration and the surfactant effect in nanoinkjet printing 下载免费PDF全文
Suphanat Aphinyan K. R. Geethalakshmi Jingjie Yeo Amir Shakouri Teng Yong Ng 《先进技术聚合物》2017,28(9):1057-1064
Ultraviolet (UV) ink is a major ink type used in additive manufacturing via 3D inkjet printing. A major challenge in nanoinkjet printing is ink agglomeration. Among the UV ink components, oligomers have the highest tendency to agglomerate which can agitate the stability and quality of the printing fluid and possibly lead to nanoscale nozzle clogging. In this work, the first numerical study on the UV ink fluid, UV ink is modeled by using dissipative particle dynamics to study mesoscale agglomeration. The constituents of the ink model are composed of polystyrene and polyethylene glycol as photopolymers, BZP as a photoinitiator, and SDS as a surfactant. Styrene is a prevalent and established commercial photopolymer in present 3D inkjet applications, while ethylene glycol is a photopolymer known to improve ink viscosity. The morphological characteristics of the UV ink are studied here, where the results for different models from four cases considered here show how the kind of photopolymers and their constituent ratios affect the agglomeration morphology of the fluidic system. The existence of both oligomers and monomers results in mutual morphological benefits against agglomeration, while the photoinitiator occurs between photopolymers. In addition, we find that the surfactant can reduce the average size of agglomeration and improve the dispersion uniformity by increasing the number of agglomerates. These results highlight the important role additives can play to prevent, reduce, and control various forms of agglomeration to achieve enhanced nanoinkjet printing quality. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
8.
Suphanat Aphinyan Elisa Y. M. Ang Jingjie Yeo Teng Yong Ng K. R. Geethalakshmi 《Journal of polymer science. Part A, Polymer chemistry》2018,56(24):1615-1624
There is a pressing need in very small scale three-dimensional (3D) inkjet printing to control and reduce agglomeration, as agglomeration often leads to nozzle clogging. While agglomeration within ultraviolet ink has been studied, there has been, to our knowledge, no extensive studies conducted for surface agglomeration of the ink on nozzle's wall. This numerical study therefore focuses on investigating if surfactants can effectively control surface agglomeration during nanodroplet formation. Many-body dissipative particle dynamics is the numerical method of choice here. We found that small amount of surfactant of about 1 wt % is sufficient to effectively reduce ink deposition on the nozzle's wall. However, by using the properties of a commercially available surfactant, sodium dodecyl sulfate, it was found that the maximum reduction achieved by its addition is only 60%. Thus, further physical or chemical deagglomeration techniques are required, and we show that by considering these other techniques, reduction of surface agglomeration to nearly 92% can be achieved. Finally, we found that adding surfactants has the additional benefit of improving total kinetic energy of the ink compositions, lowering possibility of agglomerations within the ink. It also raises the nanodroplet velocity while reducing nanodroplet breakup time, which can help speed up the process of 3D printing process. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1615–1624 相似文献
9.
Wangwang Yu Lili Dong Wen Lei Yuhan Zhou Yongzhe Pu Xi Zhang 《Molecules (Basel, Switzerland)》2021,26(11)
To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts. 相似文献
10.
Ju Dong Meichun Li Ling Zhou Sunyoung Lee Changtong Mei Xinwu Xu Qinglin Wu 《Journal of Polymer Science.Polymer Physics》2017,55(11):847-855
l ‐lactide monomers were grafted onto cellulose nanofibers (CNFs) via ring‐opening polymerization, forming poly(lactic acid) grafted cellulose nanofibers (PLA‐g‐CNFs). PLA‐g‐CNFs and pristine PLA were then blended in chloroform and dried to prepare a master batch. PLA‐g‐CNFs/PLA composite filaments targeted for 3D printing were produced by compounding the master batch in PLA matrix and melt extrusion. The as‐extruded composite filaments were subsequently thermal annealed in a conventional oven, and their morphological, thermal, and mechanical properties were evaluated. PLA was successfully grafted on the surface of CNFs as demonstrated by elemental analysis, and the concentration of grafted PLA was estimated to be 33 wt %. The grafted PLA were highly crystallized, contributing to the growth of crystalline regions of PLA matrix. The incorporation of PLA‐g‐CNFs improved storage modulus of the composite filaments in both low temperature glassy state and high temperature rubbery state. Postextrusion annealing treatment led to 28 and 63% increases for tensile modulus and strength of the filaments, respectively. Simulated Young's moduli from the Halpin‐Tsai and Krenchel models were found comparable with the experimental values. The formed composite filaments are suitable for use in 3D printing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 847–855 相似文献
11.
Wangwang Yu Mengqian Li Wen Lei Yongzhe Pu Kangjun Sun Yilong Ma 《Molecules (Basel, Switzerland)》2022,27(9)
In order to improve the properties of wood flour (WF)/poly(lactic acid) (PLA) 3D-printed composites, WF was treated with a silane coupling agent (KH550) and acetic anhydride (Ac2O), respectively. The effects of WF modification and the addition of acrylicester resin (ACR) as a toughening agent on the flowability of WF/PLA composite filament and the mechanical, thermal, dynamic mechanical thermal and water absorption properties of fused deposition modeling (FDM) 3D-printed WF/PLA specimens were investigated. The results indicated that the melt index (MI) of the specimens decreased after WF pretreatment or the addition of ACR, while the die swell ratio increased; KH550-modified WF/PLA had greater tensile strength, tensile modulus and impact strength, while Ac2O-modified WF/PLA had greater tensile modulus, flexural strength, flexural modulus and impact strength than unmodified WF/PLA; after the addition of ACR, all the strengths and moduli of WF/PLA could be improved; after WF pretreatment or the addition of ACR, the thermal decomposition temperature, storage modulus and glass transition temperature of WF/PLA were all increased, and water absorption was reduced. 相似文献
12.
选用硅烷偶联剂KH570对纳米Al_2O_3进行表面改性处理,并用改性后的Al_2O_3对双酚A环氧丙烯酸酯进行复合改性,研究了纳米Al_2O_3含量(1%(wt)~5%(wt))对树脂性能的影响。结果表明:改性纳米Al_2O_3质量分数为5%时的复合材料的体积收缩率最小,为6.48%;粒子质量分数为2%时,树脂的凝胶率最大,为88.3%;热失重测试结果表明,改性纳米Al_2O_3提高了树脂的热稳定性;拉伸性能显示,随着改性纳米Al_2O_3质量分数的增加,复合材料的拉伸强度先升高后下降,当改性纳米Al_2O_3质量分数为3%时,复合树脂拉伸强度最大,为34.74MPa,与未改性树脂相比,拉伸强度提高了108.27%。本文所制备的改性光敏树脂可适用于3D打印环境。 相似文献
13.
Noelia Maldonado Dr. Pilar Amo-Ochoa 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(9):2887-2907
This review focuses on the usefulness of coordination bonds to create 3D printable inks and shows how the union of chemistry and 3D technology contributes to new scientific advances, by allowing amorphous or polycrystalline solids to be transformed into objects with the desired shape for successful applications. The review clearly shows how there has been considerable increase in the manufacture of objects based on the combination of organic matrices and coordination compounds. These coordination compounds are usually homogeneously dispersed within the matrix, anchored onto a proper support or coating the printed object, without destroying their unique properties. Advances are so rapid that today it is already possible to 3D print objects made exclusively from coordination compounds without additives. The new printable inks are made mainly with nanoscale nonporous coordination polymers, metal–organic gels, or metal–organic frameworks. The highly dynamic coordination bond allows the creation of objects, which respond to stimuli, that can act as sensors and be used for drug delivery. In addition, the combination of metal–organic frameworks with 3D printing allows the adsorption or selective capacity of the object to be increased, relative to that of the original compound, which is useful in energy storage, gas separation, or water pollutant elimination. Furthermore, the presence of the metal ion can give them new properties, such as luminescence, that are useful for application in sensors or anticounterfeiting. Technological advances, the combination of various printing techniques, and the properties of coordination bonds lead to the creation of surprising, new, printable inks and objects with highly complex shapes that will close the gap between academia and industry for research into coordination compounds. 相似文献
14.
按CdSbxSn1-xO3进行化学量配比,以化学共沉淀法制得系列掺锑CdSnO3固溶体粉料.XRD分析结果表明,掺锑固溶的x值范围为0<x<0.3.研究固溶体组成与电导的关系发现:随着锑离子的溶入,材料的电阻先是较大程度地降低,然后再缓慢升高,并在掺锑固溶量的x值为0.02和0.25时,分别出现了两个电阻最低点.探讨了体系的固溶性与导电机制. 相似文献
15.
La2O3 和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响 总被引:16,自引:7,他引:16
采用共沉淀方法制备了NiO-MgO、NiO-La2O3-MgO、NiO-CeO2-MgO三种催化剂,用BET、XRD、TPR、XPS、TG及活性评价等方法考察了La2O3、CeO2助剂对NiO-MgO物化性质和CH4-CO2重整反应性能的影响.实验结果表明,三种催化剂中镍物种以镍镁固溶体形式存在.与NiO-MgO相比, NiO-La2O3-MgO、NiO-CeO2-MgO具有较高比表面积,且其镍物种可还原能力有所增强, NiO-CeO2-MgO尤为明显. La2O3、CeO2均在一定程度上改善了NiO-MgO的CH4-CO2重整反应性能,提高了镍晶粒的抗烧结能力.但二者的作用机制有所差异, La2O3和CeO2分别主要作为结构助剂和电子助剂发挥作用. 相似文献
16.
Three new calixarenes 3–5 featuring an alkyl residue of different chain lengths attached to one of the central ring methylene groups of the basic calix[4]arene 1 have been prepared. A systematic study that includes also the lower homologous compound 2 showing the effect of the alkyl substitution on the conformational behaviour of the calixarene framework in comparison with the unsubstituted parent compound 1 is reported. The application of special 2D NMR techniques, 2D-EXSY and ROESY methods at various temperatures establishes that calixarenes 2–5 adopt the partial cone conformation of lower symmetry and far less the symmetric cone and 1,2-alternate conformations. In solution, they undergo a fast interconversion with relatively low activation energies of about 15 kcal/mol at room temperature. The conformer distribution is well reproduced by molecular mechanistic calculations (MMFF94), indicating the present conformers to assume the lowest steric energies. A single-crystal X-ray structure of the lateral ethyl derivative 2 corroborates these results, showing the molecule in a sterically favourable partial cone conformation. 相似文献
17.
Nidhi Sharma M. Deepa Pradeep Varshney S.A. Agnihotry 《Journal of Sol-Gel Science and Technology》2000,18(2):167-173
The WO3 electrode is ubiquitous in an electrochromic device (ECD) and is a common choice as the electrochromic (EC) layer. EC films were deposited on different substrates by spin coating using peroxotungstic acid based precursor solutions followed by appropriate thermal treatment. Many properties of the films, including some of the EC properties dependant on microstructure of the films, were found to be modified by the addition of small amounts of organic acid to the precursor solution. A study of structural, electrical and electrochromic properties of films cast by using precursor solution comprising 0 to 10 wt% of oxalic acid dihydrate (OAD) was carried out in terms of surface morphology, electrical resistance, structure and EC response. The important findings are that the addition of oxalic acid to the precursor solution results in films with excellent EC properties, devoid of cracks and decreases their dc electrical resistance. 相似文献
18.
The properties of Pb1-xCaxTiO3 (x = 0–30) thin films for electromechanical and pyroelectric applications can be further improved if porous, low-dielectric constant layers are being used. The electric field dependent strain, piezoelectric coefficient, pyroelectric coefficient and the pyroelectric figure of merit were evaluated as a function of the Ca-content and relative density of the thin films. The heating-rate during the final anneal was observed to be the controlling parameter for the evolution of either dense or porous microstructures. Both 2-methoxyethanol and 1,3-propanediol based solution precursors were used for spin-coating platinized Si3N4/SiO2/Si wafers. Microstructure-property relationships and electrical properties concerning the domain mobility were examined. 相似文献
19.
以共沉淀法合成的前驱体Ni_(1/3)Co_(2/3-x)Al_x(OH)_2与低共熔锂盐0.38LiOH·H_2O-0.62LiNO_3制备了锂离子电池正极材料LiNi_(1/3)Co_(2/3-x)Al_xO_2(x=1/12,1/3,1/2,7/12).采用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对其结构、形貌和电化学性质进行表征.结果表明,LiNi_(1/3)Co_(2/3-x)Al_xO_2在1/12≤x≤1/3范围内可以保持单一的六方层状a-NaFeO_2结构,当A1掺杂量(x)高于1/3时,会出现杂相.其中,LiNi_(1/3)Co_(1/3)Al_(1/3)O_2结晶程度最高,阳离子混排效应最小,并且颗粒小而均匀,振实密度可以达到2.88 g·cm~(-3),首次放电容量为151.5 mAh·g~(-1),循环50次后放电容量保持在91.4%,在1C和2C倍率下放电容量仍可达到133.7和120.9 mAh·g~(-1) 相似文献
20.
以共沉淀法合成的前驱体Ni1/3Co2/3-xAlx(OH)2与低共熔锂盐0.38LiOH·H2O-0.62LiNO3制备了锂离子电池正极材料LiNi1/3Co2/3-xAlxO2(x=1/12,1/6,1/3,1/2,7/12).采用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对其结构、形貌和电化学性质进行表征.结果表明,LiNi1/3Co2/3-xAlxO2在1/12≤x≤1/3范围内可以保持单一的六方层状α-NaFeO2结构,当Al掺杂量(x)高于1/3时,会出现杂相.其中,LiNi1/3Co1/3Al1/3O2结晶程度最高,阳离子混排效应最小,并且颗粒小而均匀,振实密度可以达到2.88g·cm-3,首次放电容量为151.5mAh·g-1,循环50次后放电容量保持在91.4%,在1C和2C倍率下放电容量仍可达到133.7和120.9mAh·g-1. 相似文献