首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels‐Alder (HDA) chemistry has been utilized to successfully generate functional core‐shell microspheres. Initially, precipitation polymerization in conjunction with the RAFT technique has been employed to synthesize divinylbenzene (DVB) microspheres with surface expressed RAFT groups. Subsequently, HDA cycloaddition has been performed under mild reaction conditions (50 °C, 24 h) with a diene‐functionalized poly(ε‐caprolactone) (PCL). While the successful grafting is immediately evident by optical inspection of the microspheres (color change from purple to white), X‐ray photoelectron spectroscopy (XPS), and attenuated total reflectance spectroscopy (ATR) were additionally employed to characterize the chemical composition and surface functionalization of the microspheres. Further, confocal microscopy was used to confirm the presence of grafted PCL chains after labeling them with rhodamine B.

  相似文献   


2.
L,L ‐lactide (LA) and ε‐caprolactone (CL) block copolymers have been prepared by initiating the poly(ε‐caprolactone) (PCL) block growth with living poly(L,L ‐lactide) (PLA*). In the previous attempts to prepare block copolymers this way only random copolyesters were obtained because the PLA* + CL cross‐propagation rate was lower than that of the PLA–CL* + PLA transesterification. The present paper shows that application of Al‐alkoxide active centers that bear bulky diphenolate ligands results in efficient suppression of the transesterification. Thus, the corresponding well‐defined di‐ and triblock copolymers could be prepared.

  相似文献   


3.
A novel poly‐L ‐arginine group microcapsule was produced to investigate its nutritional function and pharmacological efficacy. The molecular weight of poly‐L ‐arginine is an important parameter for its membrane strength, but does not obviously affect its release property. Thus, poly‐L ‐arginine can be used as a kind of new membrane material in microcapsules, and it is expected to be used as an therapeutic and biodegradable drug carrier.

Influence of the molecular weight of poly‐L ‐arginine on membrane thickness.  相似文献   


4.
Summary: The D ‐glucose imprinted core‐shell nanosphere with an average size of ≈60 to 80 nm showed a significant preference for the binding of D ‐glucose than the non‐imprinted core‐shell nanosphere. Depending on temperature, the binding site in the shell with N‐isopropylacrylamide oligomer underwent a significant change in binding affinity. In addition, the D ‐glucose imprinted core‐shell nanosphere showed a two times higher affinity for D ‐glucose than L ‐glucose, suggesting chiral recognition of the binding site. The core‐shell nanosphere reported here is a good biomimetic model system with a well‐defined morphology, high surface area, and variable binding affinity through a change in temperature.

D ‐glucose imprinted core‐shell nanospheres showed excellent binding over the non‐imprinted core‐shell nanosphere.  相似文献   


5.
Control of the surface hydrophilicities and enzymatic hydrolyzability of hydrophobic aliphatic polyesters such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) [i.e. poly(L ‐lactic acid) (PLLA)] was attempted by coating with hydrophilic poly(vinyl alcohol) (PVA). The PVA coating was carried out by immersion of the PCL and PLLA films in PVA solutions. The effects of PVA coating on the hydrophilicities were monitored by dynamic contact angle measurements, while the enzymatic hydrolyzability of the PVA‐coated PCL and PLLA films was evaluated by the weight losses after Rhizopus arrhizus lipase‐ and proteinase K‐catalyzed hydrolysis, respectively. It was found that the PVA coating successfully enhanced the hydrophilicities of the aliphatic polyester films and significantly suppressed enzymatic hydrolyzability of the aliphatic polyester films, excluding the PCL film coated at a very low concentration such as 0.01 g · dL?1 and the crystallized PLLA film coated at 1 g · dL?1, for which slight enhancement and no significant enhancement, respectively, were observed in the enzymatic hydrolyzability. Moreover, the hydrophilicities and enzymatic hydrolyzability of the aliphatic polyester films were controllable to some extent by varying the PVA solution concentration and the film crystallinity.

Advancing contact angle (θa) of PCL, PLLA‐C, and PLLA‐A films before and after the PVA coating by immersion in 1 g · dL?1 solution.  相似文献   


6.
Summary: Tetraaniline‐block‐poly(L ‐lactide) diblock oligomers are synthesized via ring‐opening polymerization. The diblock oligomers cast from an L ‐lactide selective solvent (chloroform) show spherical aggregates for the leucoemeraldine state, and ring‐like structures that are composed of much smaller spherical aggregates for the emeraldine state. The formation mechanisms of the two different surface morphologies are discussed in detail.

Surface morphology changes induced by oxidation of the aniline segment of tetraaniline‐block‐poly(L ‐lactate) and drying effects.  相似文献   


7.
Carbon black (CB) nanoparticles were encapsulated by poly(vinyl alcohol) (PVA) by a simple method of coacervation. Transmission electron microscopy (TEM) images clearly demonstrated that the successful encapsulation of PVA happened at the surfaces of CB nanoparticles. The particle‐size distribution measurements indicated that the diameters of the obtained PVA‐encapsulated CB (CB@PVA) nanoparticles were distributed within the nanoscale dimension. This strategy avoids the complicated polymerization process involved in the counterpart of polymer‐coating approaches.

A TEM image of PVA‐encapsulated carbon black.  相似文献   


8.
A systematic investigation into the surface properties of siloxane rubber/carbon black (CB) nanocomposites has been performed, using an automated scanning probe microscope. In this way the influence of CB concentration and curing rate of the siloxane rubber matrix on roughness and conductivity of the composites was studied. Decreasing the curing rate while keeping the CB concentration resulted in a decrease in both roughness and surface conductivity, which can be explained by an additional siloxane‐rubber layer formed during curing.

  相似文献   


9.
Single chains of a neutral, dendronized polymer with peripheral azide groups ( PG3A ) are co‐deposited onto molecularly modified graphite substrates with a positively charged dendronized polymer ( PG2 ) as well as with negatively charged plasmid dsDNA. PG3A is also prepared near graphite step‐edges. Single PG3A chains are moved with a scanning force microscope tip, into close contact with either of the two polyelectrolytes, as well as the step‐edge at predetermined positions. Treating these structures in situ with UV light leads to photochemically induced cross‐linking between the PG3A chains carrying azide groups and PG2 , dsDNA, and graphite step‐edges, respectively, which is proven by mechanically challenging the “welding” points by pulling on the molecules with the SFM‐tip.

  相似文献   


10.
Monodisperse poly(D ,L ‐lactide) (PDLLA) microspheres have been prepared by dispersion polymerization of D ,L ‐lactide with a synthetic polymeric stabilizer. The polymerization is carried out in xylene/heptane (1:2, v/v) at 368 K for 3 h with poly[(dodecyl methacrylate)‐co‐(2‐hydroxyethyl methacrylate)] (P(DMA‐co‐HEMA)). P(DMA‐co‐HEMA) has hydroxy groups as an initiation group for pseudoanionic dispersion polymerization. The particle diameter and the coefficient of variation concerning the diameter distribution of the obtained PDLLA microspheres are 3.9 µm and 4.3%, respectively. In addition, from the results of dynamic light scattering measurements, it is found that P(DMA‐co‐HEMA) and the PDLLA‐grafted copolymer form a micellar structure in solution.

  相似文献   


11.
Three types of copolymers of poly(L ‐lactic acid) (PLLA) were synthesized by direct polycondensation of L ‐lactic acid and phenyl‐substituted α‐hydroxy acids (L ‐phenyllactic acid and D ‐ and L ‐mandelic acids). It was found that the glass transition temperature of the copolymers comprising L ‐mandelic acid became significantly higher (from 58 to 69 °C) with increasing content of L ‐mandelic acid (from 0 to 50 mol‐%) although the M w decreased (from 87 000 to 4 000 Da). The cast films of the L ‐mandelic acid containing copolymers showed improved tensile properties compared with those of the PLLA film. This may be due to a pinning effect of the L ‐mandelic acid units on the helix formation of PLLA, although 30% of the units were racemized. The enzymatic degradability of the L ‐mandelic acid containing copolymers was much higher than that of PLLA, as analyzed with Proteinase K® originating from Tritirachium album.

Synthesis of copolymers of L ‐lactic acid and phenyl‐substituted α‐hydroxy acids.  相似文献   


12.
Chitosan grafted oligo(L ‐lactic acid) copolymers with different length of side chain were prepared through the reaction of terminal aldehyde group of oligo(L ‐lactic acid) (OLLA) and amino groups of chitosan. The mean molecular mass of the grafting OLLA chain was ca. 600 ~ 5 000. The graft copolymers are soluble in DMSO, DMF and acetic acid. The synthesis method and structure described here provide chitosan‐g‐OLLA copolymers with broad applicability.

Structure of chitosan‐g‐oligo(L ‐lactic acid).  相似文献   


13.
Poly(3‐hexylthiophene)‐b‐poly(γ‐benzyl‐L ‐glutamate) (P3HT‐b‐PBLG) rod–rod diblock copolymer was synthesized by a ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride using a benzylamine‐terminated regioregular P3HT macroinitiator. The opto‐electronic properties of the diblock copolymer have been investigated. The P3HT precursor and the P3HT‐b‐PBLG have similar UV–Vis spectra both in solution and solid state, indicating that the presence of PBLG block does not decrease the effective conjugation length of the semiconducting polythiophene segment. The copolymer displays solvatochromic behavior in THF/water mixtures. The morphology of the diblock copolymer depends upon the solvent used for film casting and annealing results in morphological changes for both films deposited from chloroform and trichlorobenzene.

  相似文献   


14.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


15.
Summary: A chitin‐xylan hybrid polysaccharide having β(1 → 4)‐linked alternating structure of N‐acetyl‐D ‐glucosamine and D ‐xylose was synthesized via chitinase‐catalyzed polymerization. An oxazoline derivative of D ‐xylosyl‐β(1 → 4)‐N‐acetyl‐D ‐glucosamine ( 1 ) was effectively polymerized by the catalysis of chitinase from Bacillus sp., giving rise to a water‐soluble chitin‐xylan hybrid polysaccharide ( 2 ) in good yields. Molecular weights ( ) of 2 reached 1 500, which corresponds to 8–10 saccharide units.

A chitin‐xylan hybrid polysaccharide ( 2 ) synthesized via chitinase‐catalyzed polymerization.  相似文献   


16.
The O‐phospho‐L ‐serine [Ser(P)] containing peptides and proteins play an important role in controlling the morphology of biominerals. The poly[Ser(P)] and copoly[Ser(P)xAspy] affect the calcium carbonate (CaCO3) morphology and polymorph. The CaCO3 helical structures were obtained in the presence of copoly[Ser(P)75Asp25]. When the L ‐copolymer was used as an additive, a clockwise P twisted spiral morphology was formed. On the other hand, when using D ‐copolymer, a counterclockwise M twisted spiral morphology was obtained.

Optical micrographs of chiral morphologies of CaCO3 in the presence of a) L ‐copolymer and b) D ‐copolymer.  相似文献   


17.
Self‐assembly of poly(2‐vinylpyridine)‐block‐poly(ϵ‐caprolactone) (P2VP‐b‐PCL) diblock copolymer in the presence of a selective solvent is investigated by transmission electron microscopy and atomic force microscopy. Addition of water into a P2VP‐b‐PCL solution in N,N‐dimethylformamide at 20 °C produces elongated truncated lozenge shaped single crystals of uniform size and shape in large quantities. The single crystals are composed of PCL single‐crystal layer sandwiched between two P2VP layers tethered on the top and bottom basal surfaces. The formation of the single crystals is found to depend on the temperature. These findings provide a facile approach to the preparation of uniform single crystals in large quantities.

  相似文献   


18.
Block copolymers were synthesized by ring‐opening polymerization of L ‐lactide or D ‐lactide in the presence of mono‐ or dihydroxyl poly(ethylene glycol), using zinc metal as catalyst. The resulting copolymers were characterized by various techniques, namely 1H NMR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractometry, and Raman spectrometry. The composition of the copolymers was designed such that they were water soluble. Bioresorbable hydrogels were prepared from aqueous solutions containing both poly(L ‐lactide)/poly(ethylene glycol) and poly(D ‐lactide)/poly(ethylene glycol) block copolymers. Rheological studies confirmed the formation of hydrogels resulting from stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks.

Ring‐opening polymerization of L (D )‐lactide in the presence of dihydroxyl PEG using zinc powder as catalyst.  相似文献   


19.
Films of an α‐cyclodextrin/poly(ε‐caprolactone) inclusion complex have been successfully prepared and show high transparency and heat resistance in comparison to the pure polymer film. The physical properties, such as transparency, mechanical properties, and thermal stability, of the α‐CD‐PCL‐IC films are found to depend on the α‐cyclodextrin‐to‐polymer stoichiometry.

  相似文献   


20.
PCL/clay nanocomposites were prepared by microwave‐assisted in situ ROP of ε‐caprolactone in the presence of either unmodified clay (Cloisite® Na+) or clay modified by quaternary ammonium cations containing hydroxyl groups (Cloisite 30B). This PCL showed significantly improved monomer conversion and molecular weight compared with that produced by conventional heating. An intercalated structure was observed for the PCL/Cloisite Na+ nanocomposites, while a predominantly exfoliated structure was observed for the PCL/Cloisite 30B nanocomposites. Microwave irradiation proved to be an effective and efficient method for the preparation of PCL/clay nanocomposites.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号