首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method to control the morphology and functionality of micelles is reported. Triblock copolymer micelles with atom transfer radical polymerization initiators at the interface are prepared in aqueous solution. After in‐situ polymerization at the interface, the structures of the interface and corona change, and micelles with PDMAEMA‐PEG comb–coil coronal chains are obtained. In aqueous solution, the pH exerts an influence on the morphology of the micelles. The coronal chains adopt different conformations at different pH values. Upon drying, the two coronal chains phase separate and form nanometer‐sized domains.

  相似文献   


2.
A novel approach to load a hydrophilic bovine serum albumin into drug carriers was proposed in terms of temperature‐programmed “shell‐in‐shell” structures, which were fabricated with poly(N‐isopropylacrylamide), poly(lactide), poly(ethylene glycol), and Au nanoparticles. Spherically well‐defined “shell‐in‐shell” structures were constructed by a modified‐double‐emulsion method (MDEM). The lower critical solubility temperature of the structures was manipulated to 36.4 °C which was confirmed by UV/Vis spectroscopy and DSC (Differential Scanning Calorimetry).

TEM image of the Au@PLLA‐PEG@PNIPAAm‐PDLA structure.  相似文献   


3.
Summary: Ethylene and 10‐undecen‐1‐ol have been successfully copolymerized by an organically modified montmorillonite (OMMT)‐intercalated metallocene catalyst, Et[Ind]2ZrCl2, activated by methylaluminoxane (MAO). The obtained hydroxy‐functionalized polyethylene (PE‐OH)/OMMT nanocomposites exhibit enhanced structural stability as compared with the neat PE‐based ones, with no significant collapse of the nanocomposite structure being detected by WAXD examination after high‐temperature processing. The simultaneous polyolefin functionalization provides an effective and convenient solution to stabilize the PE/MMT nanocomposite structure formed by in‐situ polymerization.

  相似文献   


4.
The compounds 2‐thioxanthone‐thioacetic acid and 2‐(carboxymethoxy)thioxanthone, bimolecular photoinitiators for free radical polymerization, are synthesized and characterized. Their capability to act as initiators for the polymerization of methyl methacrylate was examined. The postulated mechanism is based on the intermolecular electron‐transfer reaction of the excited photoinitiator with the sulfur or oxygen atom of the ground state of the respective photoinitiator followed by decarboxylation. The resulting alkyl radicals initiate the polymerization.

Structures of the photoinitiators.  相似文献   


5.
Polystyrene (PS) hollow spheres containing a hole on the surface were used as templates to fabricate double‐shelled polypyrrole (PPy) hollow particles with a unique structure similar to that of a thermal bottle. Thanks to the hole on the surface, the monomer and initiator could easily and quickly diffuse into the interior of the PS hollow sphere to generate uniform PPy coatings on both the inner and outer surfaces of the hollow template. When the PS template was selectively removed with tetrahydrofuran, we obtained a double‐shelled hollow particle with a structure resembling that of a thermal bottle. We also demonstrated that the morphology and porosity of the resultant PPy coatings could be manipulated and fine‐tuned by adjusting at least three parameters: the concentration of monomer, the polymerization time, and the addition of poly(vinyl pyrrolidone).

  相似文献   


6.
This communication reports the first example of precision polyolefin nanoalloys where an exotic immiscible polymer is nanometrically dispersed with stability in a polyolefin matrix in a highly controlled mode. Following the preparation of polypropylene/multiwalled carbon nanotubes nanocomposites (PP/MWCNTs) by in situ Ziegler‐Natta polymerization, the hydroxyl groups on the surfaces of individual MWCNTs are used to initiate ring‐opening polymerization of ε‐caprolactone, resulting in PP/poly(ε‐caprolactone) (PCL) alloy with PCL grafted on MWCNTs. Upon phase formation, the PP/MWCNTs‐g‐PCL alloys exhibit a unique PCL dispersion morphology, which is stable and solely governed by PCL molecular weight.

  相似文献   


7.
Preservation of initial polymer/catalyst particle morphology under air, was examined using stopped‐flow Ziegler–Natta polymerization with various quenching conditions and post‐chemical treatments. The exposure of the initial particles to air caused the fast formation of cracks on the surface, finally leading to significant reformation of the particle shape, when polymerizing particles were washed with heptane at ?65 °C under N2 or under CO2. On the other hand, when the particles were washed with heptane containing an appropriate amount of tetrahydrofuran under CO2, the particle morphology under air was almost completely maintained even after 1 h exposure. The present results are useful for various ex situ characterizations of unstable initial polymer/catalyst particles.

  相似文献   


8.
Summary: A quenched‐flow reactor is introduced as an effective means for the production of polyolefin particles with precisely controlled reaction times as low as 40 ms. The use of off‐line scanning electron microscopy and induced‐coupled plasma yields experimental data on the development of the kinetics and morphology of nascent structures during the polymerisation of ethylene on a heterogeneous TiCl4 MgCl2 Ziegler–Natta catalyst. Initial ex situ observations revealed the development of specific morphologies very early during the reaction (e.g., cracks in platelike surfaces, fines, extrudates, etc.) that can potentially lead to fines, and the kinetic analysis showed extremely high reaction rates at very short times.

Scanning electron micrograph of a network of fibrils formed by the deformation of the surface of a particle due to the generation of internal forces.  相似文献   


9.
We have developed a novel strategy for the preparation of ion‐bonded supramolecular star polymers by RAFT polymerization. An ion‐bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert‐butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by 1H NMR and GPC. The results show that the polymerization possesses the character of living free‐radical polymerization and the ion‐bonded supramolecular star polymers PSt, PtBA, and PSt‐b‐PtBA, with six well‐defined arms, were successfully synthesized.

  相似文献   


10.
Polymer‐encapsulated silver nanoparticles were synthesized and sterically stabilized by a new core‐shell type system consisting of poly(S‐alt‐MA)‐graft‐PMMA copolymer that acts as a scaffold for the synthesis of size confined nanoparticles. The graft copolymer is synthesized via ambient temperature ATRP using the CuBr/PMDETA catalytic system at ambient temperature. The graft copolymer is hypothesized to function as a scaffold with the anhydride part interacting strongly with the silver ions, while the PMMA graft functions as a polymer brush that stabilizes the dispersion and prevents the particle aggregation due to a ‘polymer brush effect’. UV absorption and TEM studies confirm that the synthesized silver composite particles have a core‐shell structure.

  相似文献   


11.
Summary: Polyaniline‐vanadium oxide nanocomposite nanosheets with thickness between 10 and 20 nm, and lateral dimensions in the range of hundreds of nanometers to several microns have been synthesized by in situ intercalation polymerization of aniline with layered V2O5 under hydrothermal conditions. The product was characterized by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR) spectroscopy, and X‐ray diffractometer (XRD). The effects of the concentration of aniline and reaction temperature on the morphologies of polyaniline‐vanadium oxide nanocomposites have also been investigated.

SEM image of tremella‐like polyaniline‐vanadium oxide nanocomposite nanosheets.  相似文献   


12.
A high‐molar‐mass cylindrical brush polymer with a main chain degree of polymerization of Pw = 1047 is synthesized by free‐radical polymerization of a poly‐2‐isopropyloxazoline macromonomer with Pn = 28. The polymerization is conducted above the lower phase transition temperature of the macromonomer, i.e., in the phase‐separated regime, which provides a sufficiently concentrated macromonomer phase mandatory to obtain high‐molar‐mass cylindrical brushes. Upon heating to the phase transition temperature, the hydrodynamic radius is observed to shrink from 34 to 27 nm. Further increase in temperature resulted in aggregated chains which were observed to coexist with single chains until eventually only aggregates of μm size were detectable.

  相似文献   


13.
A new dendritic heteroarm star copolymer that contains multi‐alternating arms of poly(ethylene oxide‐tetrahydrofuran) (P(EO‐THF)) and poly(methyl methacrylate) (PMMA) on a dendritic polyester core has been synthesized by a ‘core‐first’ approach by combination of sequential cationic ring‐opening polymerization (CROP) and reversible addition–fragmentation transfer (RAFT) polymerization initiated by a dendritic macroinitiator ( 3 ) capped with multi‐alternating terminal carboxylic acid groups (used directly to initiate the ROP of THF in the presence of EO as a polymerization promoter to attain P(EO‐THF) arms) and dithiobenzoate groups (used to initiate RAFT polymerization of MMA to attain PMMA arms). The structures of the products were confirmed by NMR spectroscopy, GPC‐MALLS, and DSC measurements.

  相似文献   


14.
Summary: Combinatorial exploration of material compositions and associated informatics having influenced medicinal chemistry are now transforming the material sciences. In ceramic science, both thin and thick film combinatorial techniques are available. Ink‐jet printing provides a pathway to the latter. Mixing behind the nozzle and in front of the nozzle in well plates is described here. Such instruments are described and compared, and compositional calibration details for both are given.

Calibration library printed from a ceramic ternary system.  相似文献   


15.
An isotropic melt of a chiral side‐chain polymethacrylate was studied by electric birefringence technique. A phase transition between two different isotropic phases was detected by Kerr effect and confirmed by WAXS measurements. The obtained experimental data can explain the previously reported bistable phase behavior of the polymer, as conventional Sm A phase is formed in slow cooling whereas a TGB‐like, optically isotropic mesophase in fast cooling.

  相似文献   


16.
A simple method to fabricate polymer nanocomposites with single‐walled carbon nanotubes is reported, in which the nanotubes were reacted with poly(L ‐lysine) by using high‐speed vibration milling. The nanocomposites obtained were characterized by Fourier transform infrared (FT‐IR), UV–Vis spectroscopy, and thermogravimetric methods. The morphology as well as the dispersion of the carbon nanotubes were determined by scanning and transmission electron microscopy.

  相似文献   


17.
Detection of the adduct radical by ESR spectroscopy and after‐effect ESR measurements of the adduct radical concentrations in the photosensitized polymerization of styrene (St) in the presence of dimers of α‐methylstyrene (MSD) and methyl methacrylate have revealed that the dominant mechanism of adduct radical loss changes from bimolecular termination to fragmentation as the temperature is increased beyond 90 °C for St/MSD.

  相似文献   


18.
19.
Highly exfoliated poly(propylene) (PP)/clay nanocomposites with obvious improvements in both the tensile strength and toughness have been prepared by a novel TiCl4/MgCl2/imidazolium‐modified montmorillonite (IOHMMT) compound catalysts. Through this approach, in situ propylene polymerization can actually take place between the silicate layers and lead not only to PP with a high isotacticity and molecular weight, but also to a highly exfoliated structure even at high clay content levels (as high as 19 wt.‐%).

  相似文献   


20.
Multi‐walled carbon nanotubes (MWNT) purified by acidic solution were processed with PMMA via an in‐situ polymerization. Experimental evidences indicate the role of radical initiator (AIBN) and MWNT, showing increases of polymerization rate and MWNT diameter. Induced radicals on the MWNT by AIBN were found to trigger the grafting of PMMA. Moreover, the solvent cast film showed a better nanoscopic dispersion of MWNT and possibilities of CNT composites in engineering applications.

Fractured surface of multi‐walled carbon nanotube composite with PMMA prepared by in‐situ bulk polymerization.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号