首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jae-Ho Han 《Optik》2010,121(24):2266-2268
We have experimentally shown wavelength mode switching in a dual-wavelength Erbium-doped single cavity fiber laser where the initial two wavelengths of 1 nm spacing are determined by the cascaded reflection type short-period fiber Bragg gratings having two different centre wavelengths of 1550.5 and 1551.5 nm. The lasing mode depends on the polarization in the ring cavity to migrate from one wavelength to another or operates in both modes in a polarization beam splitter output. To effectively control the polarization in the ring cavity, the polarization controllers were positioned before and after the polarization beam splitter. This method of wavelength switching provides a simple way of mode tuning in dual-wavelength fiber lasers.  相似文献   

2.
Chen X  Yao J  Deng Z 《Optics letters》2005,30(16):2068-2070
A fiber Bragg grating filter with ultranarrow dual-transmission bands implemented using the equivalent phase shift technique is demonstrated. A fiber ring laser that incorporates a dual-transmission-band fiber Bragg grating filter in the ring cavity is implemented. Dual-wavelength single-longitudinal-mode lasing with a wavelength spacing as small as 0.147 nm at room temperature is experimentally demonstrated.  相似文献   

3.
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.  相似文献   

4.
Luo  A. -P.  Luo  Z. -C.  Xu  W. -C. 《Laser Physics》2011,21(2):395-398
We propose and demonstrate an efficient and simple wavelength switchable dual-wavelength passively mode-locked fiber ring laser based on a semiconductor saturable absorber mirror (SESAM) and a cascaded sequence of fiber Bragg gratings (FBGs). The efficient self-starting mode-locked operation was realized with a SESAM. Dual-wavelength pulses with a wavelength spacing of 12.49 nm were obtained which was determined by the reflection peaks of the FBGs used in the experiment. In addition, by rotating the polarization controllers (PCs), the switchable dual-wavelength operation was simply achieved via exploiting wavelength-dependent loss mechanism.  相似文献   

5.
A Dual-Wavelength Semiconductor Optical Amplifier (DW-SOA) based fiber ring laser with synchronous wavelength tunability is proposed and experimentally demonstrated. The SOA gain medium strongly suppresses mode competition, thus allowing stable dual-wavelength laser oscillation. The wavelength spacing of the two lasers can be tuned synchronously using a modified hybrid-tuning package incorporating a pair of Fiber Bragg Gratings (FBGs). The DW-SOA demonstrates a laser output with a wavelength spacing of between 0.10 and 8.30 nm (wavelength shift inequality of 0.08 to 0.75 nm). The relationship between the applied strain and wavelength shift of the two tuning modes is also analyzed.  相似文献   

6.
A highly efficient dual-wavelength ytterbium-doped fiber linear cavity laser is experimentally demonstrated. Two cascaded fiber Bragg gratings are used as the wavelength selection component. Stable dualwavelength operation and wavelength-switching modes can be realized by appropriately adjusting the polarization state of the intra-cavity light and the reflectivity of the laser cavity. For dual-wavelength operation, the power difference between the two wavelength lasers (1029.7 and 1040.4 nm) can be less than 0.6 dB and the signal-to-amplified spontaneous emission (ASE) ratio is more than 52 dB. The slope efficiency of the laser is as high as 63.9%.  相似文献   

7.
A broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror (HiBi-FLM) and a polarization controller is demonstrated experimentally. The measured transmission spectrum of HiBi-FLM covers a wide range from 1525 to 1575 nm. The wavelength of proposed laser can be flexibly tunable during this range of ∼50 nm by adjusting the polarization controller. In addition, the spacing of two wavelengths is adjustable by changing the length of HiBi fiber. The dual-wavelength lasers with the HiBi fiber length of 1 and 2 m are experimentally demonstrated and compared. The experimental results show that the proposed laser can stably operate on two wavelengths simultaneously at room temperature, and the output peak power variation is about 0.5 dB during 40 min.  相似文献   

8.
Pan S  Zhao X  Lou C 《Optics letters》2008,33(8):764-766
We propose and demonstrate a novel single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier. The SOA biased in its low-gain regime greatly reduces the gain competition of the two wavelengths. The stable SLM operation is guaranteed by a passive triple-ring cavity and a fiber Fabry-Perot filter. The dual-wavelength output with a 40 GHz wavelength spacing is switchable in the range of 1533-1565.4 nm.  相似文献   

9.
In this paper, a novel all-optical microwave generation technique based on a dual-wavelength single-longitudinal-mode (SLM) distributed Bragg reflector (DBR) fiber laser is proposed and demonstrated. By exploiting spatial hole burning (SHB) effect, this laser could provide stable dual-wavelength SLM operation with a wavelength separation of 0.088 nm corresponding to the microwave signal at 10.484 GHz with a 3 dB bandwidth of 28 kHz. By appropriately adjusting the pump power, dual-wavelength oscillation could be maintained at different temperatures. We have theoretically analyzed the mechanism for microwave generation of the proposed DBR laser, and the calculated microwave frequency is in good agreement with our experimental results. Furthermore, experimental observation shows both of the laser wavelengths and generated microwave signals have good stability at room temperature.  相似文献   

10.
Wang  T.  Liang  G.  Miao  X.  Zhou  X.  Li  Q. 《Laser Physics》2012,22(5):948-952
We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.  相似文献   

11.
Wavelength tunable erbium-doped fiber ring laser operating in L-band   总被引:4,自引:0,他引:4  
We describe a novel erbium-doped fiber ring laser utilizing the backward amplified spontaneous emission (ASE) power as a secondary pump source so that it can operate in L-band stably. The output wavelength can be tuned in a wide range of 45 nm, from 1560 to 1605 nm. We also compared this scheme with the condition of not using the ASE as secondary pump source, and found this scheme could improve the performance of the laser when using the same components.  相似文献   

12.
A simple actively mode-locked fiber ring laser is proposed and successfully demonstrated to generate dual-wavelength picosecond pulses with close wavelength spacing using one Bragg grating in standard single-mode fiber. The proposed laser can be made to operate in stable dual-wavelength at room temperature, due to the birefringence characteristic of the FBG induced by transverse strain. Transverse strain loading on the FBG allows the wavelength spacing to be controlled. Generation of stable dual-wavelength pulses with a pulsewidth of 212–234 ps and a tunable wavelength separation from 0.2 to 0.44 nm at a pulse rate of 1.05 GHz was demonstrated.  相似文献   

13.
A novel method for fabricating dual-wavelength fiber Bragg gratings (FBGs) by using one phase mask is developed. The method is based on a double-exposure technique. Our technique lends itself to writing gratings with controllable reflectivity and separation of two Bragg wavelengths. A grating with two equal transmission peaks of 20.25 dB is obtained by this method and the separation of the two Bragg wavelengths is about 0.8 nm. With the grating, we demonstrate a dual-wavelength erbium-doped fiber ring laser whose interval of the two peaks is 0.8 nm. The laser's peak powers can get 3.1 mW above and have a good stability.  相似文献   

14.
A novel method for fabricating dual-wavelength fiber Bragg gratings (FBGs) by using one phase mask is developed. The method is based on a double-exposure technique. Our technique lends itself to writing gratings with controllable reflectivity and separation of two Bragg wavelengths. A grating with two equal transmission peaks of 20.25 dB is obtained by this method and the separation of the two Bragg wavelengths is about 0.8 nm. With the grating, we demonstrate a dual-wavelength erbium-doped fiber ring laser whose interval of the two peaks is 0.8 nm. The laser's peak powers can get 3.1 mW above and have a good stability.  相似文献   

15.
A new stable dual-wavelength fiber-ring laser based on erbium-doped fiber amplification is reported. The laser is based on ring resonators and employs fiber Bragg gratings to select the operation wavelengths. The topology of the laser has a significant influence in its performance: allowing an independent control of the losses for both lasing wavelengths and achieving a low noise configuration. As a result, it is experimentally demonstrated that both emission lines work in single-longitudinal-mode operation and the topology offers a better stability and higher optical signal-to-noise ratios than similar configurations.  相似文献   

16.
刘超  裴丽  吴良英  王一群  翁思俊  余少伟 《物理学报》2015,64(17):174207-174207
本文提出了一种基于光纤叠栅的全光纤声光可调谐滤波器, 与普通光纤布拉格光栅型全光纤声光可调谐滤波器相比, 该滤波器能够对光纤叠栅的两个中心波长进行同步调制. 理论分析了声波频率和声致应变幅度对基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱的影响, 结果表明, 各阶次反射峰分别以两个主反射峰为中心呈对称关系, 且主反射峰与其所调制出的次反射峰之间的波长间隔与声波频率成正比, 而两个主反射峰所调制出的同阶次反射峰之间的波长间隔与声波频率无关; 声致应变幅度主要影响主反射峰及次反射峰的反射率的变化. 实验中, 分别测试声波频率为390 kHz和710 kHz的基于光纤叠栅的全光纤声光可调谐滤波器的传输光谱, 实验结果的变化趋势与仿真分析结果相一致.  相似文献   

17.
A stable, incorporate and switchable dual-wavelength fiber laser with two fiber Bragg gratings written in a photosensitive and polarization-maintaining erbium-doped fiber directly, that is, without splices in the laser cavity, is proposed and demonstrated. Simultaneous dual-wavelength oscillation is achieved at room temperature with a wavelength spacing of 0.343 nm. The power fluctuation and wavelength shift of single-wavelength oscillations are measured to be less than 0.24 dB and 0.013 nm over 2 h. The wavelength switchability between single- and dual-wavelength oscillations is realized by altering the voltage upon the electrostrictive ceramic actuator.  相似文献   

18.
We report the development of a ring tunable fiber laser based on tunable fiber Bragg gratings (TFBG) integrated with an optical circulator. The TFBG is embedded inside a 3-piont bending device for wavelength tuning. The tunable laser operating in the C-band has power variation, tuning resolution, tuning range and laser line width of ±0.5 dB, 0.5 nm, 25.0 nm and less than 0.05 nm, respectively. As 40 mW of pump power is used, the ring tunable laser has a side mode suppression ratio of 60 dB and a power conversion efficiency of 25%. These specifications ensure the high-quality operation of a tunable laser.  相似文献   

19.
We describe and compare the performances of two crucial configurations for a tunable dual-wavelength fiber laser, namely, the linear and ring configurations. The performances of these two cavities and the tunability in the dual-wavelength output varied from 0.8 to 11.9 nm are characterized. The ring cavity provides a better performance, achieving an average output power of 0.5 dBm, with a power fluctuation of only 1.1 dB and a signal-to-noise ratio (SNR) of 66 dB. Moreover, the ring cavity has minimal or no background amplified spontaneous emission (ASE).  相似文献   

20.
We propose and experimentally demonstrate a stable dual-wavelength erbium-doped polarization-maintaining (PM) fiber laser with tunable wavelength spacing using an all-PM linear cavity that makes use of two reflection peaks from the PM fiber Bragg grating (PM-FBG). Experimental results show stable dual lasing lines with a wavelength separation of ∼0.22 nm and a large optical signal-to-noise ratio (OSNR) of over 40 dB under room temperature. By applying axial strain to the PM-FBG, the center wavelengths of the two lasing lines can be tuned over several nanometers and the wavelength separation between the lasing lines can also be tuned to as small as 0.05 nm, which, to our knowledge, is the smallest wavelength spacing ever obtained from a stable room-temperature dual-wavelength fiber laser. The proposed laser configuration has the advantages of simple structure, low loss, stable dual-wavelength operation and a very small lasing linewidth of ∼5 kHz . PACS 42.55.Wd; 42.81.-i; 42.81.Gs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号