首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors describe a method for the extraction of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) from agricultural products. The metal organic framework (MOF) HKUST-1 (a copper(II) benzene-1,3,5-tricarboxylate) was used as a sorbent for efficient clean-up and preconcentration of MCPA. The effects of pH value, stirring time, amount of sorbent on extraction were optimized by central composite design. Ultrasonic waves were used for desorption procedure and its advantage was demonstrated for an increase in extraction recovery. Corona discharge ion mobility spectrometry (IMS) was then applied for fast and sensitive determination of MCPA. The method was validated in terms of sensitivity, recovery and reproducibility. Under the optimum conditions the calibration plot is linear between 0.035–0.200 μg. L?1. The detection limit is 10 ng L?1, with relative standard deviations of <5%. Real samples (water, soil and agricultural product) were spiked and then analyzed by this method, and the results revealed efficient solid phase extraction and recovery.
Graphical abstract Schematic presentation of a procedure for extraction of an organochlorine pesticide (2-methyl-4-chlorophenoxyacetic acid) from agriculture products using the HKUST-1 metal-organic framework prior to determination by ion mobility spectrometry based on its ionization in drift cell.
  相似文献   

2.
We describe a molecularly imprinted polymer (MIP) for the solid-phase extraction of the skin protectant allantoin. The MIP was deposited on the surface of monodisperse silica microspheres possessing acroyl groups on the surface (MH-SiO2). The resulting MIP microspheres (MH-SiO2@MIP) showed a 3.4-fold higher adsorption capacity and a 1.9-fold better selectivity for allantoin than the respective non-imprinted polymer (MH-SiO2@NIP). The monolayer adsorption capacities of the MH-SiO2@MIP and the MH-SiO2@NIP were calculated with the help of the Langmuir model and found to be 6.8 and 1.9 mg?g?1, respectively. Adsorption kinetics fit a pseudo-second order rate mechanism, with an initial adsorption rate of 1.44 for the MH-SiO2@MIP, and of 0.07 mg?g?1?min?1 for the MH-SiO2@NIP. The material can be regenerated, and its adsorption capacity for allantoin remains stable for at least five regeneration cycles. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.
Figure
A molecularly imprinted polymer for the selective separation of allantoin was developed. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.  相似文献   

3.
Zhong  Xianwen  Deng  Fang  Wang  Yuehua  Luo  Xubiao 《Mikrochimica acta》2013,180(15):1453-1460

We describe a molecularly imprinted polymer (MIP) for the solid-phase extraction of the skin protectant allantoin. The MIP was deposited on the surface of monodisperse silica microspheres possessing acroyl groups on the surface (MH-SiO2). The resulting MIP microspheres (MH-SiO2@MIP) showed a 3.4-fold higher adsorption capacity and a 1.9-fold better selectivity for allantoin than the respective non-imprinted polymer (MH-SiO2@NIP). The monolayer adsorption capacities of the MH-SiO2@MIP and the MH-SiO2@NIP were calculated with the help of the Langmuir model and found to be 6.8 and 1.9 mg•g−1, respectively. Adsorption kinetics fit a pseudo-second order rate mechanism, with an initial adsorption rate of 1.44 for the MH-SiO2@MIP, and of 0.07 mg•g−1•min−1 for the MH-SiO2@NIP. The material can be regenerated, and its adsorption capacity for allantoin remains stable for at least five regeneration cycles. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.

A molecularly imprinted polymer for the selective separation of allantoin was developed. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.

  相似文献   

4.
An analytical methodology incorporating a molecularly imprinted solid-phase extraction procedure (MISPE) has been developed for the determination of parabens in environmental solid samples. Four different polymers were prepared combining the use of acetonitrile or toluene as porogen, and 4-vinylpyridine (VP) or methacrylic acid (MAA) as monomer, using benzylparaben (BzP) as a template molecule. Although all the polymers were able to recognize the template in rebinding experiments, the MIP prepared in toluene using MAA showed better performance. This polymer was also capable of recognizing other parabens (methyl, ethyl, isopropyl, propyl, isobutyl, butyl and benzylparaben) allowing to develop an appropriated MISPE procedure for this family of compounds. The extraction of the parabens from environmental solid samples was performed by ultrasonic assisted extraction in small columns (SAESC), and this procedure next to MISPE as clean-up step followed by HPLC-UV determination was successfully used for the determination of parabens in soil and sediment samples of different locations. Recoveries ranging from 80% to 90% have been achieved depending on the compound and the samples, and limits of detection (LODs) were under 1 ng g−1 for all the compounds, making this method suitable for the determination of parabens in environmental solid matrices. The method was further applied to the determination of paraben contents in real samples, founding levels up to 11.5 ng g−1 in sea sediments.  相似文献   

5.
A novel molecularly imprinted polymer was synthesized with attapulgite employed as matrix, which is simple and time-saving. In this method, sudan I was chosen as template molecule, 2-vinylpyridine as functional monomer and ethylene glycol dimethacrylate as cross-linking agent, respectively. The imprinted polymer was characterized by the infrared spectroscopy and transmission electron microscopy. Then the selectivity experiments were performed on sudan dyes and the recognition coefficients for sudan I, sudan II, sudan III and sudan IV were 2.9, 1.9, 1.9 and 2.3, respectively. As the packing material of solid-phase extraction, the imprinted polymer has been applied to on-line concentration of the four sudan dyes in samples from Yellow River water, tomato sauce and sausage. The corresponding analytical methods to determine these sudan dyes have been developed. The limits of detection for these sudan dyes were in the range of 0.01–0.05 ng mL−1 for Yellow River water, 1.0–3.0 ng g−1 for tomato sauce and 0.8–3.0 ng g−1 for sausage.  相似文献   

6.
The first study on the high efficiency of triocarbohydrazide modified attapulgite as solid-phase extractant for preconcentration of trace Au(III) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES) has been reported. Experimental conditions for effective adsorption of trace levels of Au(III) were optimized with respect to different experimental parameters using batch and column procedures in detail. At pH 3, Au(III) could be quantitatively adsorbed on the new sorbent, and the adsorbed Au(III) could be completely eluted from the sorbent surface by 2.0mL 1.0molL(-1) of HCl+2% CS(NH(2))(2) solution. An enrichment factor of 150 was accomplished. Moreover, common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the sorbent for Au(III) was found to be 66.7mgg(-1). The detection limit (3σ) of this method was 0.32μgL(-1) and the relative standard deviation (RSD) was 3.3% (n=8). The method, with high selectivity, sensitivity and reproducibility, was validated using certified reference materials, and had been applied for the determination of trace Au(III) with satisfactory results.  相似文献   

7.
An ion-imprinted polymer (IIP) was obtained by copolymerization of methacrylic acid (as a functional monomer) and ethylene glycol dimethacrylate (as a crosslinking agent) in the presence of various chelators for Pt(II) ion and using 2,2??-azo-bis-isobutyronitrile as the initiator. Specifically, acetaldehyde thiosemicarbazone (AcTSn) and benzaldehyde thiosemicarbazone (BnTSn) were used as chelators. The IIPs were applied as sorbents for solid-phase extraction of Pt(II) and Pt(IV) ions from aqueous solutions. The effects of acidity and flow rate of the sample, of elution conditions and of potentially interfering ions were investigated. The imprinting effect of analyte is clearly demonstrated by the fact that only the IIP is capable of quantitative retention of Pt(II) and Pt(IV) ions. The method works best in the pH range from 0.5 to 1 and from 3.5 to 9.5. The ions can be recovered with an acidic solution of thiourea. The Pt-AcTSn polymer displays better sorption properties for the separation of analytes. The selectivity coefficients of the Pt-AcTSn and control polymers for Pt(IV) in the presence Pd(II), Rh(III), Ru(III), Al(III) and Cu(II) were calculated, and the sorbent capacity for Pt(IV) was found to be 4.56???g?g?-1. The method was successfully applied to the determination of Pt(IV) by electrothermal atomic absorption spectrometry in tap water, tunnel dust and anode slime samples.
Figure
The new ion imprinted polymers based on Pt(II)-thiosemicarbazone derivative chelates were prepared and used as solid phase extraction sorbent for selective separation of platinum. The method was successfully applied to the determination of analyte in environmental samples by electrothermal atomic absorption spectrometry  相似文献   

8.
A batch process was developed to extract bismuth ions by a novel and selective sorbent. In this study, a new Bi(III)-ion imprinted polymer was prepared by formation of 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex for selective preconcentration of ultra trace amounts of bismuth. Polymerization was performed with ethylene glycol dimethacrylate, as crosslinking monomer and methacrylic acid as functional monomer; in the presence of 2,2-azobisisobutyronitrile, as initiator, via bulk polymerization. Optimum pH for maximum sorption was 2.5–3.5. Maximum sorbent capacity and enrichment factor for bismuth were 35.9?mg?g?1 and 300, respectively. The relative standard deviation and limit of detection the method were evaluated as ±4.1% and 8.6?ng?L?1. This method is simple, selective and sensitive and can be applied to the determination of bismuth in water, biological and plant samples.  相似文献   

9.
Cloud point extraction (CPE) has been used for the pre-concentration of mercury, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and later analysis by electrothermal atomic absorption spectrometry (ETAAS) using polyethyleneglycolmono-p-nonyphenylether (PONPE 7.5) as surfactant. The chemical variables affecting the separation step were optimized. Under the optimum conditions, i.e, pH 8.5, cloud point temperature 80 degrees C, 5-Br-PADAP=4x10(-5) mol L(-1), PONPE 7.5=0.2%, sample volume=1.0 mL, an enhancement factor of 22-fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.01 microg L(-1). The precision for 10 replicate determinations at 2.0 microg L(-1) Hg was 4.0% relative standard deviation (R.S.D.). The calibration graph using the pre-concentration system for mercury was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 16 microg L(-1). The method was successfully applied to the determination of mercury in biological samples and in certified reference material (QC METAL LL3).  相似文献   

10.
Microchimica Acta - The authors describe a method for the trace determination of Hg(II) in human fluids using magnetic dispersive solid phase extraction. A silica powder magnetized with Fe3O4...  相似文献   

11.
This paper describes the preparation of zwitterion-functionalized polymer microspheres (ZPMs) and their application to simultaneous enrichment of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) from environmental water samples. The ZPMs were prepared by emulsion copolymerization of ethyl methacrylate, 2-diethylaminoethyl methacrylate and triethylene glycol dimethyl acrylate followed by modification with 1,3-propanesultone. The components were analyzed by elemental analyses as well as Fourier transform infrared spectroscopy, and the structures were characterized by scanning electron microscopy and transmission electron microscopy. The ZPMs were packed into a mini-column for on-line solid-phase extraction (SPE) of the above metal ions. Following extraction with 40 mM NH4NO3 and 0.5 M HNO3 solution, the ions were quantified by ICP-MS. Under the optimized conditions, the enrichment factors (from a 40 mL sample) are up to 60 for the ions V(V), As(III), Sb(III) and Hg(II), and 55 for Cr(III) and Sn(IV). The detection limits are 1.2, 3.4, 1.0, 3.7, 2.1 and 1.6 ng L?1 for V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II), respectively, and the relative standard deviations (RSDs) are below 5.2%. The feasibility and accuracy of the method were validated by successfully analyzing six certified reference materials as well as lake, well and river waters.
Graphical abstract Zwitterion-functionalized polymer microspheres (ZPMs) were prepared and packed into a mini-column for on-line solid-phase extraction (SPE) via pump 1. Then V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) ions in environmental waters were eluted and submitted to ICP-MS via pump 2.
  相似文献   

12.
Ion-selective electrode (ISE) was designed by dispersing the dysprosium(III) IIP particles in 2-nitrophenyloctyl ether plasticizer and then embedded in polyvinyl chloride matrix. The ISE shows a Nernstian response for dysprosium(III) over a wide concentration range (8.0 × 10−6 to 1.0 × 10−1 M) with a slope of 21.7 mV per decade. The limit of detection was 2 × 10−6 M. This sensor has a very fast response time (∼10 s) and offers high selectivity compared to conventional chemical sensors towards dysprosium(III) with respect to several alkali, alkaline earth and transition metal ions as the selectivity is 10-100-fold better. The sensor was used for determination of dysprosium(III) ions by potentiometric (EDTA) titration and has been successfully demonstrated for the determination of fluoride in mouth wash solution.  相似文献   

13.
14.
A novel and efficient sulfadiazine imprinted polymer was synthesized via co-precipitation method and successfully grafted on magnetic multi-walled carbon nanotubes. The synthesized magnetic imprinted polymer was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, thermal analysis and applied as a sorbent for selective magnetic solid-phase extraction of sulfadiazine. The retained sulfadiazine was eluted by 150.0 µL methanol/acetic acid (6:4) solution and quantified by fiber optic linear array spectrophotometry via formation of a detectable azo dye. All parameters affecting the extraction of sulfadiazine were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 2.0–50.0 µg L?1 with a detection limit of 0.56 µg L?1 and enrichment factor of 300.0. The relative standard deviation at 30.0 µg L?1 of sulfadiazine (N = 6) was 2.8 and 4.6% for intra-day and inter-day, respectively. The method was successfully applied to determine sulfadiazine in human urine, honey, milk and environmental water samples.  相似文献   

15.
Geobacillus thermoleovorans subsp stromboliensis, was immobilized on an Amberlite XAD-4 ion exchanger and used as a solid phase extractant for the preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry. Parameters affecting the preconcentration (such as the pH value of the sample solution, the concentration of U(VI), the volume and type of eluent, the flow rate and the effect of potentially interfering ions) were studied. The optimum pH for the sorption of U(VI) was found to be pH 5.0. 5.0?mL of 1 M hydrochloric acid were used to eluate the U(VI) from the column. The loading capacity is 11?mg?g?1. The limits of detection and quantification are 2.7 and 9.0?μg?L?1, respectively, and relative standard deviations are <10?%. The method was applied to the determination of U(VI) in a certified reference sample (NCS ZC-73014; tea leaves) and in natural water samples.
Figure
Schematic presentation of SPE procedure using Geobacillus thermoleovorans subsp stromboliensis immobilized on an Amberlite XAD-4 as ion exchanger for preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry  相似文献   

16.
A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag+ and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO3 solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag+ was 18.08 μmol g−1. The relative standard deviation and limit of detection (LOD = 3Sb/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10−8 M, respectively. The new Ag+-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10−10 and 1.2 × 10−9 M, respectively.  相似文献   

17.
A new ligand, 2-phenyl(5-fluoro)imidazo[f]-1,10-phenanthroline (PIP(V)), and its coordination compounds, Ru(bpy)2PIP(V), were synthesized. The fluorescence spectrum of the interaction between Ru(bpy)2PIP(V) and DNA was studied, and a very strong fluorescence peak at a wavelength of 589 nm appeared. The optimum condition of analyzing DNA was decided. The method is simple, convenient and fast, and also has high sensitivity and good selectivity. It has been satisfactorily employed for determinations in synthesized samples.  相似文献   

18.
A new solid phase extraction method for the separation and determination of zirconium using agar as an adsorbent is described. The method is based on the adsorption of zirconium as arsenazo(III) complex on agar in a mini-column, elution with sulfuric acid-acetone mixture and determination by spectrophotometry. The effect of different parameters such as pH, concentration of the reagent, eluting reagent, and volume of the sample, amount of the adsorbent and interfering ions was investigated. The calibration graph was linear in the range of 5?C300 ng ml?1 of zirconium under optimum conditions. The limit of detection based on 3Sb was 1.3 ng ml?1 and the relative standard deviation (R.S.D) for ten replicate measurements of 15 and 200 ng ml?1 of zirconium was 3.7 and 1.8%, respectively. The method was applied to the determination of zirconium in water and soil samples.  相似文献   

19.
20.
A mesoporous silica has been chemically modified with 5-mercapto-1-methyltetrazole. The newly synthesized material was characterized by powder X-ray diffraction, N2 adsorption, FT-IR, 13C-NMR spectroscopy and elemental analysis, and used to preconcentrate Pb(II) from aqueous solutions. The effect of several variables on the adsorption capacity (i.e. stirring time, pH, interfering ions, presence of other heavy metals in the medium, etc.) has been studied using batch and column techniques. The adsorption capacity of the material followed the order: Pb(II) >> Cu(II) > Cd(II) >>Mn(II) > Ni(II) > Co(II). In column experiments a pre-concentration factor of 200 was obtained for Pb(II). Spiked tap water, mineral water and river water were used for the preconcentration and determination of Pb(II) by flame atomic absorption spectrometry, and a 101–103% recovery was obtained. The limit of detection and quantification values of the method were found to be 2.22·10?6 mM and 8.20·10?6 mM, respectively. The relative standard deviation for four preconcentration experiments was found to be ≤9% in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号