首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-walled carbon nanotubes were evaluated as sorptive packing material for in-tube microextraction (ITEX2) in combination with GC-MS for the analysis of benzene, toluene, ethylbenzene, xylenes, and naphthalene in aqueous samples. For method development, a three-level full factorial design of experiment (DoE) was performed incorporating extraction temperature, number of extraction strokes, and extraction flow. The statistical analysis of method development showed that all considered extraction parameters significantly affected the extraction yield. Furthermore, it was shown that some factors significantly interacted with each other, which indicates the advantage of using DoE for method development. The thereby optimized ITEX2 protocol was validated regarding its linear dynamic range, method detection limit (MDL), and precision. The MDLs of investigated analytes ranged between 2 ng L?1 for naphthalene and 11 ng L?1 for p-xylene. The relatively low MDL obtained for naphthalene, despite its comparably low air–water partitioning, can be explained by its strong interaction with carbon nanotubes. All obtained MDLs are at least comparable to previous reports on microextraction techniques, emphasizing both the quality of ITEX2 and the highly promising sorbent characteristics of carbon nanotubes. Furthermore, the method was applied to three real samples, which demonstrated good recoveries of analytes from tap water, a bank filtrate, and an effluent from a wastewater treatment plant.
Figure
MWCNTs as sorptive material for ITEX2  相似文献   

2.
We describe a simple, environmentally friendly and selective technique for the determination of ochratoxin A (OTA) in urine. It involves (a) the use of a molecularly imprinted polymer as a sorbent in micro-solid-phase extraction in which the sorbent is contained in a propylene membrane envelope, and (b) separation and detection by capillary electrophoresis (CE). Under optimized conditions, response is linear in the range between 50 and 300 ng mL?1 (with a correlation coefficient of 0.9989), relative standard deviations range from 4 to 8 %, the detection limit for OTA in urine is 11.2 ng mL?1 (with a quantification limits of 32.5 ng mL?1) which is lower than those of previously reported methods for solid-phase extraction combined with CE. The recoveries of OTA from urine spiked at levels of 50, 150 and 300 ng mL?1 ranged from 93 to 97 %.
Figure
?  相似文献   

3.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

4.
We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL?1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g?1) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of functionalized magnetic multiwalled carbon nanotube.  相似文献   

5.
We report on a simple, rapid, and efficient method for the extraction of volatile organic compounds (VOCs; including methanol, tetrahydrofuran, 2-hexanone and benzene) from air and solid samples. The system is based on the use of a laboratory-made syringe as the extractor. The needle of the syringe is placed in a chamber cooled by liquid nitrogen. The tip of the needle is placed in the headspace of a vial containing the sample. The headspace components then are circulated with a pump to pass the needle, and this results in freeze-trapping of the VOCs on the inner surface of the needle. The circulation of the headspace components is continued for 15 min, and the syringe is then removed and placed in a GC injector. The effects of volume of the sample vial, headspace flow rate, temperature and time of extraction and desorption were optimized. The overall time for sampling and analysis is <30 min. The method displays an extraction efficiency of >80%) and a good sample transfer efficiency into the GC column due to the absence of a sorbent inside the needle. No carry-over was observed after 30?s desorption at 260?°C. An external standard method was used for quantitative analysis. The relative standard deviation values are below 10% and the limits of detection range from 1.3 to 4.6?ng?g?1.
Fiugre
The scheme of sorbentless cryogenic needle trap device  相似文献   

6.
We describe a new method for differential-pulse anodic stripping voltammetric determination of thallium(I) using a carbon paste electrode modified with dicyclohexyl-18-crown-6. The effect of supporting electrolyte (type and pH), accumulation and reduction potential, and of time and amount of modifier were investigated by differential pulse anodic stripping voltammetry. A method was then worked out for the determination of thallium at low levels. Under optimized conditions, the response to Tl(I) is linear in the range from 3.0 to 250 ng mL?1. The detection limit is 0.86 ng mL?1. The sensor displays good repeatability (with a relative standard deviation of ±2.70 % for n?=?7) and was applied to the determination of Tl(I) in water, hair samples, and certified reference materials.
Figure
Crown ethers allow only some ions to entry and complex formation that their sizes equal to ether cavity.  相似文献   

7.
We have developed a method for ultrasound-assisted ionic-liquid (IL) microextraction at elevated temperatures. A sealed pipette tip was used to hold the IL. The polycyclic aromatic hydrocarbons naphthalene, acenaphthene and fluorene were headspace-extracted into a 30-μL volume of the IL at 60 °C. Cooling is not needed to control the temperature of the extraction solvent because it has almost zero vapor pressure. Following extraction, the analyte-loaded IL was submitted to HPLC with fluorescence detection. Under the optimal conditions, the limits of detection (at S/N?=?3) are 30, 30 and 10 ng L?1 for naphthalene, acenaphthene and fluorene, respectively. Recoveries range from 86 to 110 %, and the extraction efficiency is better than previous methods by a factor of ~40. The technique was applied to the analysis of semivolatile pollutants (PAHs) in real aqueous samples.
Figure
A new ultrasound-assisted headspace ionic liquid for a high temperature microextraction (UAHS- ILHTME) technique has been proposed. The schematic diagram of UAHS-ILME at elevated apparatus. (1) ultrasound water bath; (2) sample vial; (3) headspace phase; (4) rubber cover; (5) pipette tip; (6) extractant; (7) adiabatic baffle; (8) upper levels; (9) middle levels; (10) lower levels.  相似文献   

8.
A desorption study of 57 volatile organic compounds (VOCs) has been conducted by use of accelerated solvent extraction (ASE) and gas chromatography–mass spectrometry. Different solvents were tested to extract activated charcoal tubes with the objective of replacing carbon disulfide, used in official methods, because of its highly toxic health and environmental effects. Extraction conditions, for example temperature and number of cycles, were investigated and optimized. The definitive extraction procedure selected was use of acetone at 150 °C and two consecutive extraction cycles at a pressure of 1,500 psi. Considering a sample volume of 0.005 Nm3, corresponding to a sampling time of 8 h at a flow rate of 0.01 L?min?1, the method was validated over the concentration range 65–26,300 μg?Nm?3. The lowest limit of quantification was 6 μg?Nm?3, and recovery for the 93 % of analytes ranged from 65 to 102 %. For most of the compounds, relative standard deviations were less than 15 % for inter and intra-day precision. Uncertainty of measurement was also determined: the relative expanded uncertainty was always below 29.6 %, except for dichlorodifluoromethane. This work shows that use of friendlier solvent, for example acetone, coupled with use of ASE, can replace use of CS2 for chemical removal of VOCs from activated charcoal. ASE has several advantages over traditional solvent-extraction methods, including shorter extraction time, minimum sample manipulation, high reproducibility, and less extraction discrimination. No loss of sensitivity occurs and there is also a salutary effect on bench workers’ health and on the smell of laboratory air.
Figure
Acetone molecule, vials, cells and sorbent tubes used for VOCs extraction with Accelerated Solvent Extractor.  相似文献   

9.
Ion pair solid phase extraction was applied to the simultaneous preconcentration of iron and antimony. The ion pairs consisting of FeCl4 ? or SbCl4 ? anions and the benzyldimethyltetradecyl ammonium cation were formed on the surface of multi-walled carbon nanotubes, then eluted with nitric acid, and the elements finally quantified by ETAAS. The adsorption capacities of the impregnated MWCNTs are 9.2 mg g?1 for iron and 27.5 mg g?1 for antimony. The following analytical figures of merit were determined for iron and antimony, respectively: Enrichment factors of 210 and 230, assay precisions of ±5.3 % and ±4.8 %, linear calibration plots from 0.7 to 9.4 and 13.0 to 190 ng L?1, and detection limits of 0.17 and 3.5 ng L?1. The method was applied to the determination of iron and antimony in human hair, synthetic sample, and to the certified reference materials gold ore (MA-1b) and trace elements in water (SRM 1643d).
Figure
?  相似文献   

10.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

11.
A method was developed for the determination of cadmium(II) by ligand-less solid phase extraction that is based on the direct retention of Cd(II) in a mini-column filled with a silica gel modified with an amino-functionalized ionic liquid. The effects of pH, sample volume and its flow rate, eluent concentration and its volume, the flow rate of eluent, and of potential interferences on extraction and desorption were optimized. Following its determination by electrothermal atomic absorption spectrometry, the detection limit for Cd(II) is 8.9 ng L?1, and the relative standard deviation is 2.3 % (at 1.0 ng mL?1; for n?=?5). The method was applied to the analysis of Cd(II) in a certified reference material (laver; GBW10023), and the recoveries ranged from 97.0 to104.0 %
Figure
◆ Amino-functionalized ionic liquid modified silica gel (NH2-IL/SG) obtained a better absorption for Cd(II) than bare silica gel in the tested pH range due to electrostatic interaction between amino groups and Cd(II).  相似文献   

12.
Solid-phase microextraction (SPME) based on carboxylated single-walled carbon nanotube fibers was used to extract several chlorophenols (CPs) and organochlorine pesticides (OCPs) from aqueous samples prior to their determination by GC with electron capture detection. The main parameters affecting microextraction (temperature, time, stirring rate and salting-out effect) and the conditions of the thermal desorption in the GC injector were optimized. Compared with commercial SPME fibers, the fiber presented better selectivity and sensitivity. Linear response was found for the concentration range between 2 and 1000 ng L?1 (20–1000 ng L?1 for CPs), and the limits of detection were in the range from 0.07 to 4.36 ng L?1. The repeatability expressed as relative standard deviation ranged from 4.1 % to 8.2 % and the fiber-to-fiber reproducibility for four prepared fibers was between 6.5 % and 10.8 %. The method was successfully applied to the analysis of CPs and OCPs in lake water and waste water samples. Recovery was tested with spiked lake water and waste water samples, with values ranging from 89.7 % to 101.2 % in case of waste water samples.
Figure
Raman spectra: (A) SWNTs, and (B) Oxidized SWNTs  相似文献   

13.
A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L?1 range between 0.75 and 5 ng L?1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n?=?5, 1,000 ng L?1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L?1) and WWTP B (12.29 μg L?1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L?1.
Figure
Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples  相似文献   

14.
Chenyu Li  Ligang Chen  Wei Li 《Mikrochimica acta》2013,180(11-12):1109-1116
We report on a method for the extraction of organophosphorus pesticides (OPPs) from water samples using mixed hemimicelles and magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) modified by cetyltrimethylammonium. Fe3O4@TiO2 nanoparticles were synthesized by a hydrothermal process and then characterized by scanning electron microscopy and Fourier transform IR spectrometry. The effects of the quantity of surfactant, extraction time, desorption solvent, pH value, extraction volume and reuse of the sorbent were optimized with respect to the extraction of OPPs including chlorpyrifos, dimethoate, and trichlorfon. The extraction method was applied to analyze OPPs in environmental water using HPLC along with UV detection. The method has a wide linear range (100–15,000 ng L?1), good linearity (r?>?0.999), and low detection limits (26–30 ng L?1). The enrichment factor is ~1,000. The recoveries (at spiked levels of 100, 1,000 and 10,000 ng L?1) are in the range of 88.5–96.7 %, and the relative standard deviations range from 2.4 % to 8.7 %.
Figure
Schematic illustration of the preparation of CTAB coated Fe3O4@TiO2 and its application as SPE sorbent for enriching OPPs  相似文献   

15.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

16.
A selective and low organic-solvent-consuming method of sample preparation combined with high-performance liquid chromatography with diode-array detection is introduced for analysis of phthalic acid esters in edible oils. Sample treatment involves initial liquid–liquid partitioning with acetonitrile, then QuEChERS cleanup by dispersive solid-phase extraction with primary secondary amine as sorbent. Preconcentration of the analytes is performed by ionic-liquid-based dispersive liquid–liquid microextraction, with the cleaned-up extract as disperser solvent and 1-hexyl-3-methylimidazolium hexafluorophosphate as extraction solvent. Under the optimized conditions, correlation coefficients (r) were 0.998–0.999 and standard errors (S y/x ) were 2.67–3.37?×?103 for calibration curves in the range 50–1000 ng g?1. Detection limits, at a signal-to-noise ratio of 3, ranged from 6 to 9 ng g?1. Intra-day and inter-day repeatability, expressed as relative standard deviation, were in the ranges 1.0–6.9 % and 2.4–9.4 %, respectively. Recovery varied between 84 % and 106 %. The developed method was successfully used for analysis of the analytes in 28 edible oils. The dibutyl phthalate content of four of the 28 samples (14 %) exceeded the specific migration limit established by domestic and international regulations.
Figure
?  相似文献   

17.
We report on an inorganic–organic hybrid nanocomposite that represents a novel kind of fiber coating for solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The material is composed of ZnO nanoparticles, polythiophene and hexagonally ordered silica, and displays good extraction capability due to its nanostructure. The nanocomposite was synthesized by an in-situ polymerization technique, and the ZnO nanoparticles were anchored to the pores in the walls. The ZnO/polythiophene/hexagonally ordered silica (ZnO/PT/SBA-15) nanocomposite was then deposited on a stainless steel wire to obtain the fiber for SPME of PAHs. Optimum conditions include an extraction temperature of 85 °C (for 30 min only), a desorption temperature of 260 °C (for 2 min), and a salt concentration (NaCl) of 20 % (w/v). The detection limits are between 8.2 and 20 pg mL?1, and the linear responses extend from 0.1 to 10 ng mL?1. The repeatability for one fiber (for n?=?5), expressed as relative standard deviation, is between 4.3 and 9.1 %. The method offers the advantage of being simple to use, rapid, and low-cost (in terms of equipment). The thermal stability of the fiber and high relative recovery (compared to conventional methods) represent additional attractive features.
Figure
We report on an inorganic–organic hybrid nanocomposite that represents a novel kind of fiber coating with thermal stability and high relative recovery for solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The method is simple to use, rapid and low-cost.  相似文献   

18.
We report on a combination of magnetic solid-phase extraction and spectrophotometric determination of bromate. Cetyltrimethylammonium ion was adsorbed on the surface of phenyl-functionalized silica-coated Fe3O4 nanoparticles (Ph-SiO2@Fe3O4), and these materials served as the sorbent. The effects of surfactant and amount of sorbent, the composition of the desorption solution, the extraction time and temperature were optimized. Under optimized conditions, an enrichment factor of 12 was achieved, and the relative standard deviation is 2.9 % (for n?=?5). The calibration plot covers the 1–50 ng mL?1 range with reasonable linearity (r 2?>?0.998); and the limit of detection is 0.5 ng mL?1. The method is not interfered by ionic compounds commonly found in environmental water samples. It was successfully applied to the determination of bromate in spiked water samples.
Figure
Extraction of bromate ions using surfactant-coated phenyl functionalized Fe3O4 magnetic nanoparticles followed by spectrophotometric detection.  相似文献   

19.
We have developed a modified method for the extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes (BTEX) in aqueous samples. It based on dispersive liquid-liquid microextraction along with solidification of floating organic microdrops. The dispersion of microvolumes of an extracting solvent into the aqueous occurs without dispersive solvent. Various parameters have been optimized. BTEX were quantified via GC with FID detection. Under optimized conditions, the preconcentration factors range from 301 to 514, extraction efficiencies from 60 to 103 %, repeatabilities from 2.2 to 4.1 %, and intermediate precisions from 3.5 to 7.0 %. The relative recovery for each analyte in water samples at three spiking levels is >85.6 %, with a relative standard deviation of <7.4 %.
Figure
A modified method based on dispersive liquid-liquid microextraction to preconcentrate benzene, toluene, ethylbenzene and xylenes was investigated. The method was rapid, precise, efficient, and sensitive. Experimental parameters affecting the extraction process were evaluated. The optimized procedure was validated according to the ICH guidance.  相似文献   

20.
We report on a sensitive, simple, label-free impedance-based immunoelectrode for the determination of microcystin-LR (MCLR). The surface of the electrode was modified with a composite made from multiwalled carbon nanotubes and an ionic liquid, and with immobilized polyclonal antibody against MCLR. Cyclic voltammetry and impedance spectroscopy were applied to characterize the modified electrode. It is found that the multi-walled carbon nanotubes act as excellent mediators for the electron transfer between the electrode and dissolved hexacyanoferrate redox pair, while the ionic liquid renders it biocompatible. The method exhibits a wide linear range (0.005 μg?L-1 to 1.0 μg?L-1), a low detection limit (1.7 ng?L-1) and a long-term stability of around 60 days. The ionic liquid 1-amyl-2,3-dimethylimidazolium hexafluorophosphate gave the best impedimetric response. The new immunoelectrode is sensitive, stable, and easily prepared. It has been successfully applied to the determination of MCLR in water samples.
Figure
The immunosensor, modified with a nanocomposite of room temperature ionic liquid- multiwalled carbon nanotube, was applied to detect MCLR. The method exhibits a wide linear range (0.005 μg·L?1 to 1.0 μg·L?1), a low detection limit (1.7 ng·L-1) and a long-term stability of around 60 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号