首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a novel graphene-based nanoarchitecture modified with plasma-polymerized propargylamine (G-PpPG) and its application in electrochemical sensors for DNA. Films of G-PpPG were characterized by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. The presence of graphene enhances the electrochemical activity of the films, and the high density of amino groups (deposited at a low plasma input power) on their surface assists in the immobilization of probe DNA on the water-swollen polymeric network. By contrast, the degree of hybridization of the total complementary target DNA to the probe DNA remains unchanged when G-PpPG nanofilms prepared at higher input power. No substantial non-specific adsorption of totally mismatched target DNA on the polymer films is observed because of the complete coverage of the probe DNA. The detection limit for total complementary target DNA is approximately 1.84 nmol?·?L?1. The dynamic range extends from 0.1 to 1,000 nmol?·?L?1. The new nanocomposite may also be used to immobilize other probe DNA sequences, and this makes the approach potentially applicable to the detection of other oligomers. Figure
Preparing the DNA sensor made from the graphene-based nanoarchitecture modified by using PpPG (G-PpPG) includes the following processes: (a) Modifying the Au electrode with the graphene nanosheet, (b) depositing the PpPG film onto the Au electrode coated with graphene, (c) immobilizing the probe DNA onto the G-PpPG film, and (d) hybridizing the MM0 target with the G-PpPG film immobilized with P1  相似文献   

2.
Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6?years in (bio)analytical chemistry in general, and in biosensing in particular.
Figure
Carbon nanotubes and graphene in analytical applications  相似文献   

3.
This review (with 79 references) summarizes the recent work on the development of chemical sensors and biosensors based on the use of composites made from conducting polymers (CPs) and graphene. Owing to the unique electrical, mechanical, optical, chemical and structural properties of CP and graphene, these kinds of composites have generated increasing interest in senor field. In this review, we first discuss methods for preparation of CP/GE composites by chemical, electrochemical, or physical methods including electrostatic interactions. We then cover aspects of the fabrication of modified electrodes and the performance of respective sensors with electrochemical, electronic or optical signal transduction. We then discuss sensors for the determination of inorganic and organic species, gases and vapors. We also review the state of the art in respective biosensors for hydrogen peroxide and glucose, for oligomers (DNA, RNA, and aptamers), for biogenic amines, NAD^+/NADH, cytochromes and the like, and in immunosensors. Finally, the perspective and current challenges of CP/GE composites for use in (bio)sensors are outlooked.
Figure
Conducting polymer composites with graphene have attracted increasing research interest in the modified electrodes for the application in chemical sensors and biosensors, due to the unique intrinsic properties of each component.  相似文献   

4.
The electrochemical behavior of rutin was investigated in pH 6.0 buffer solution using a glassy carbon electrode coated with graphene nanosheets, chitosan and a poly (amidoamine) dendrimer in pH?6.0 buffer solution. The results indicate that the modified electrode displays electrochemical redox activity towards rutin, and that the oxidation peak current of rutin increases significantly compared to that at other electrodes. The amount of immobilized graphene and dendrimer, pH value, scan rate, accumulation time and accumulation potential were optimized. The kinetic parameters, charge transfer coefficient, transfer electron number, proton transfer number, standard rate constant, were calculated. Under the optimized conditions, the oxidation peak current is proportional to the concentration of rutin in the range between 0.001 and 2.0???mol L?1 (R?=?0.9991). The detection limit is 0.6?nmol L?1 (at S/N?=?3). The electrode exhibits satisfactory selectivity and reproducibility and was applied to the determination of rutin in pharmaceutical preparations, spiked human serum, and traditional Chinese medicine, with recoveries between 97.2 and 104.67%.
Figure
1. Preparation of graphene nanosheets and PAMAM modified glassy carbon electrode. 2. Graphene nanosheets and PAMAM improve the electrochemical redox of rutin. 3. The prepared electrode determines rutine with high sensitivity and selectivity. 4. The developed method can determine rutin in pharmaceutical formulations, human serum, and traditional Chinese medicine.  相似文献   

5.
We report on a method for electrochemical enantioselective recognition of tryptophan (Trp) enantiomers. It is based on competitive host-guest interaction between a deoxy-(2-aminoethylamino)-β-cyclodextrin (CD) bound to graphene nanosheets and the Cu(II) complexes of the Trp enantiomers via a ligand exchange mechanism. Chiral recognition was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The results reveal that the CD bound to graphene displays a stronger interaction with the Cu(II) complex of L-Trp than to that of D-Trp. The method was applied to the determination of the ratio of Trp enantiomers in mixtures.
Figure
The CD-GNs are dipped in D-Trp or L-Trp solution containing Cu(II), the complexes of metal ion with L-Trp caused more remarkable difference in the [Fe(CN)6]3?/4? than the complexes of metal ion with D-Trp.  相似文献   

6.
Ni2P/graphene hybrid with a 3D architecture has been successfully accomplished through a series of controlled chemical processes. In contrast to random mixture of Ni2P nanoparticles and graphene nanosheets, the architecture hybrid exhibits superior electrochemical stability because the Ni2P nanoparticles are firmly riveted on the graphene sheets. The 3D graphene network enhances the electrical conductivity over the 2D nanostructure. As anode materials for lithium-ion batteries, the graphene-wrapped Ni2P nanoparticles can deliver a reversible capacity of ~400 mAh g?1 after 30 cycles with nearly no fading and also exhibit a good rate performance. The graphene network can serve as a conducting network for fast electron transfer from all directions between the active materials and charge collector, and better buffer spaces to accommodate the volume expansion/contraction during discharge/charge process, which can be considered to contribute to the remarkable cyclic stability, thereby pointing to a new synthetic route to hybridizing graphene with active materials for advanced lithium ion batteries.
Figure
Ni2P/graphene hybrid with a 3D architecture has been successfully accomplished through a novel synthetic route, which exhibited good electrochemical performance  相似文献   

7.
Two-dimensional inorganic solids, such as layered double hydroxides (LDHs), also defined as anionic clays, have open structures and unique anion-exchange properties which make them very appropriate materials for the immobilization of anions and biomolecules that often bear an overall negative charge. This review aims to describe the important aspects and new developments of electrochemical sensors and biosensors based on LDHs, evidencing the research from our own laboratory and other groups. It is intended to provide an overview of the various types of chemically modified electrodes that have been developed with these 2D layered materials, along with the significant advances made over the last several years. In particular, we report the main methods used for the deposition of LDH films on different substrates, the conductive properties of these materials, the possibility to use them in the development of membranes for potentiometric anion analysis, the early analytical applications of chemically modified electrodes based on the ability of LDHs to preconcentrate redox-active anions and finally the most recent applications exploiting their electrocatalytic properties. Another promising application field of LDHs, when they are employed as host structures for enzymes, is biosensing, which is described considering glucose as an example.
Figure
  相似文献   

8.
We report on a new electrochemical biosensing strategy for the sensitive detection of hydrogen peroxide (H2O2) in foodstuff samples. It is based on a gold electrode modified with layer of graphene patterned with a multilayer made from an organic?Cinorganic hybrid nanomaterial. Initially, a layer of thionine (Th) was assembled on the surface of the graphene nanosheets, and these were then cast on the surface of the electrode for the alternate assembly of gold nanoparticles and horseradish peroxidase. The large surface-to-volume ratio and high conductivity of the nanosheets provides a benign microenvironment for the construction of the biosensor. The use of such a multilayer not only shortens the electron transfer pathway of the active center of the enzyme due to the presence of gold nanoparticles, but also enhances the electrocatalytic efficiency of the biosensor toward the reduction of H2O2. The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The number of layers, the operating potential, and the pH of the supporting electrolyte were optimized. Linear response is obtained for the range from 0.5???M to 1.8?mM of H2O2, the detection limit is 10 nM (at S/N?=?3), and 95% of the steady-state current is reached within 2?s. The method was applied to sense H2O2 in spiked sterilized milk and correlated excellently with the permanganate titration method.
A new electrochemical biosensing strategy for sensitive detection of hydrogen peroxide in foodstuff was developed by using a gold electrode modified with a layer of graphene nanosheets patterned with a multilayer made from an organic?Cinorganic hybrid nanomaterial.  相似文献   

9.
We report on a new and facile method for the preparation of well-dispersed gold-palladium (AuPd) flower-shaped nanostructures on sheets of graphene oxide (GO). Transmission electron microscopy and high angle annular dark field STEM were used to characterize the morphology and composition of the new nanohybrids. The AuPd/GO composites display high electrocatalytic activity for the oxidation of ethanol in strongly alkaline medium as examined by cyclic voltammetry and chronoamperometry. Both the current density (13.16 mA?·?cm?2 at a working potential of ?0.12 V) and the long-time stability are superior to a commercial Pd-on-carbon catalyst which is attributed to the cooperative action of the catalytic activities of Au and Pd, and the good dispersion of the alloy on the nanosheets.
Figure
Flower shaped gold-palladium alloy on graphene oxide nanosheets  相似文献   

10.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

11.
Electrochemistry can be used for fabrication and characterization of mesoporous oxide films. First, this review provides insight into the methods used to prepare templated mesoporous thin films on an electrode surface, i.e., evaporation-induced self-assembly (EISA) and electrochemically assisted self-assembly (EASA). Electrochemical characterization of mass transport processes in pure and organically functionalized mesoporous oxide films is then discussed. The electrochemical response can be basically restricted by the electron/mass transfer reaction at the electrode–film interface and diffusion through mesopore channels. The contributions of cyclic voltammetry, hydrodynamic voltammetry, electrochemical impedance spectroscopy, and scanning electrochemical microscopy to the characterization of films with distinct mesostructures are finally described, with special emphasis on identification of conditions that can affect the electrochemical response recorded with such modified electrodes.
Figure
Permeability through mesoporous thin films  相似文献   

12.
Single?Clayered graphene, emerging as a true two?Cdimensional nanomaterial, has tremendous potential for electrochemical catalysis and biosensing as a novel electrode material. Considering the excellent properties of graphene, such as large surface?Cto?Cvolume ratio, high conductivity and electron mobility at room temperature, low energy dynamics of electrons with atomic thickness, robust mechanical and flexibility, we give a general view of recent advances in electrochemical sensors based on graphene. We are highlighting here important applications of graphene and graphene nanocomposites, and the assay strategies in electrochemical sensors for DNA, proteins, neurotransmitters, phytohormones, pollutants, metal ions, gases, hydrogen peroxide, and in medical, enzymatic and immunosensors.
Graphical Abstract
Graphene, a recent star carbon nanomaterial with lots of excellent properties, has caused increasing interests on the development of new-types graphene-based electrochemical sensors including DNA and protein sensor, enzyme based sensor, immunosensor, neurotransmitter sensor, medicine sensor, phytohormone sensor, pollutants sensor, metals ion sensor, gas sensor, and H2O2 sensor  相似文献   

13.
We report on an electrochemical aptasensor for the ultrasensitive determination of thrombin. A glassy carbon electrode modified with a graphene-porphyrin nanocomposite exhibits excellent electrochemical activity and can be used as a redox probe in differential pulse voltammetry of the porphyrin on its surface. The thrombin aptamer is then immobilized via p-stacking interactions between aptamer and graphene and π-π stacking with porphyrin simultaneously. The resulting electrochemical aptasensor displays a linear response to thrombin in the 5–1,500 nM concentration range and with a limit of detection of 0.2 nM (at an S/N of 3). The sensor benefits from the synergetic effects of graphene (with its high conductivity and high surface area), of the porphyrin (possessing excellent electrochemical activity), and of the aptamer (with its high affinity and specificity). This kind of aptasensor conceivably represents a promising tool for bioanalytical applications.
Figure
The representation of the sensing procedure for analysis of thrombin based on the TA/GN-Por/GCE by an electrochemical strategy  相似文献   

14.
We report on a nonenzymatic glucose sensor based on a glassy carbon electrode that was electrochemically modified with a nanocomposite prepared from nickel hydroxide and graphene. Scanning electron microscopy revealed that the nickel hydroxide in the nanocomposite was present in the form of a nanostructure of three-dimensional spheres that were assembled by many densely arranged nanosheets. The electrocatalytic activity of the electrode toward the oxidation of glucose was investigated by chronoamperometry. The current response was linearly related to the glucose concentration in the range from 1 to 10?μM, with a sensitivity of 494?μA?mM–1?cm–2 and a correlation coefficient of 0.9990, and a second range (from 10 to 1000?μM with a sensitivity of 328?μA?mM–1?cm–2 and a correlation coefficient of 0.9990). The detection limit was 0.6?μM at a signal-to-noise ratio of 3, and the response time was as short as 2?s.
Figure
As seen in the scanning electron microscopic image, three-dimension Ni(OH)2 spheres was decorated on the surface of graphene. Due to its excellent electrochemical properties and large specific surface area, the addition of graphene obviously promoted the current response to glucose at the Ni(OH)2 modified electrode.  相似文献   

15.
We have developed a lactate biosensor based on a bionanocomposite (BNC) composed of titanium dioxide nanoparticles (TiO2-NPs), photocatalytically reduced graphene, and lactate oxidase. Graphene oxide was photochemically reduced (without using any chemical reagents) in the presence of TiO2-NPs to give graphene nanosheets that were characterized by atomic force microscopy, Raman and X-ray photoelectron spectroscopy. The results show the nanosheets to possess few oxygen functionalities only and to be decorated with TiO2-NPs. These nanosheets typically are at least 1 μm long and have a thickness of 4.2 nm. A BNC was obtained by mixing lactate oxidase with the nanosheets and immobilized on the surface of a glassy carbon electrode. The resulting biosensor was applied to the determination of lactate. Compared to a sensor without TiO2-NPs, the sensor exhibits higher sensitivity (6.0 μA mM?1), a better detection limit (0.6 μM), a wider linear response (2.0 μM to 0.40 mM), and better reproducibility (3.2 %).
?  相似文献   

16.
The electrochemical oxidation of guanosine-5??-monophosphate (GMP) was studied with a glassy carbon electrode modified with a composite made from graphene and multi-walled carbon nanotubes. GMP undergoes an irreversible oxidation process at an oxidation peak potential of 987?mV in phosphate buffer solution. Compared to other electrodes, the oxidation peak current of GMP with this electrode was significantly increased, and the corresponding oxidation peak potential negatively shifted, thereby indicating that the modified material exhibited electrochemical catalytic activity towards GMP. Chronocoulometry demonstrates that the material also effectively increases the surface area of the electrode and increases the amount of GMP adsorbed. Under the optimum conditions, the oxidation current is proportional to the GMP concentration in the range from 0.1 to 59.7???M with a correlation coefficient of 0.9991. The detection limit is 0.025???M (at S/N?=?3).
Figure
We have developed an electrochemical method for sensitive determination of guanosine-5??-monophosphate (1) based on graphene and multi-walled carbon nanotubes modified glassy carbon electrode by amperometry.  相似文献   

17.
A nanocomposite film is described that is composed of alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles that interact through electrostatic forces. The films of varying thickness were prepared by the layer-by-layer technique, and Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The composite films were characterized by UV?Cvis spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Most nanocomposite films exhibit linear, uniform, and regular layer-by-layer growth during the process of formation. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.
Figure
A nanocomposite film was prepared by alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles, in which Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.  相似文献   

18.
We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10?μM, with a detection limit of 0.04?μM (at S/N?=?3). The modified electrode also displays good storage stability, reproducibility, and selectivity.
Figure
Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50?nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.  相似文献   

19.
We describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm?2 mM?1) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors.
Figure
Individual ZnO micro/nanowire based electrochemical biosensor was constructed. The biosensor displayed a higher sensitivity of 89.74 μA cm?2 mM?1 for uric acid detection.  相似文献   

20.
This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references.
Figure
This article reviews recent advances in the use of carbon nanomaterials (CNs) for the electroanalytical measurements of biogenic amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号