首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The conformational stability of hexahydropyridobenzodioxin and related derivatives in both protonated and non-protonated forms have been investigated by means of ab initio molecular orbital methods as well as semi-empirical AM1 and PM3 methods. One of the cis conformers (cis2e) has been found to be most stable due to the formation of an intramolecular hydrogen bond, other conformers including the trans isomer cannot form this interaction but are of different stability because of the orientation of the polar oxygens and the nitrogen. The effect of the intramolecular hydrogen bonding on the stability of hexahydropyridobenzodioxin and its methylated derivatives has been examined using various basis sets levels. In protonated form, both the semi-empirical and ab initio calculations give excellent agreement in energetic order; however, different orderings of conformer stabilities are observed by different computational methods in non-protonated form. The results provide insight into the intramolecular hydrogen bonding in computational studies of biologically important molecules.  相似文献   

2.
The various conformers of the dicarboxylic acids HO2C--(CH2)n--CO2H, n = 1-4, were obtained using density functional methods (DFT), both in the gas phase and in the aqueous phase using a polarized continuum model (PCM). Several new conformers were identified, particularly for the two larger molecules glutaric (n = 3) and adipic acid (n =4). The PCM results show that the stability of most conformers were affected, many becoming unstable in the aqueous phase; and the energy ordering of conformers is also different. The results suggest that conformational preferences could be important in determining the design and stability of appropriate synthetic receptors for glutaric and adipic acid. Geometry changes between gas and aqueous phases were most marked in those conformers containing an intramolecular hydrogen bond. Additional calculations have probed the strength of intramolecular hydrogen bonds in these dicarboxylic acids. In the cases of glutaric and adipic acid, the strength of the intramolecular hydrogen bond were estimated to be around 28-29 kJ/mol, without any vibrational energy correction. The intramolecular hydrogen bond energies in malonic and succinic acid were also estimated from the calculated H-bond distances using an empirical relationship. Intramolecular H-bond redshifts of 170-250 cm(-1) have been estimated from the results of the harmonic frequency analyses.  相似文献   

3.
In the present work, a conformational analysis of 3-mercapto propeneselenal is performed using several computational methods, including DFT (B3LYP), MP2, and G2MP2. At the DFT and G2MP2 levels the most stable conformers of title compound are characterized by an extended backbone structure, minimizing the steric repulsions between the sulfur and selenium lone pairs. Two conformers exhibit hydrogen bonding. This feature, although not being the dominant factor in energetic terms, appears to be of foremost importance to define the geometry of the molecule. The influence of the solvent on the stability order of conformers and the strength of intramolecular hydrogen bonding was considered using the PCM, SCI–PCM, and IEF–PCM methods. The results of analysis by quantum theory of “Atoms in Molecules” and natural bond orbital method fairly support the DFT results. The calculated HOMO and LUMO energies showed that charge transfer occurs within the molecule. Further verification of the obtained transition state structures was implemented via intrinsic reaction coordinate analysis. Calculations of the 1H NMR chemical shift at GIAO/B3LYP/6–311++G** levels of theory are also presented. The excited-state properties of intramolecular hydrogen bonding in hydrogen-bonded systems have been investigated theoretically using the time-dependent density functional theory method.  相似文献   

4.
A detailed quantum chemical study of the solvent effects in the intramolecular hydrogen bonding, conformational stability, and reactivity of aspirin has been performed using density functional theory (DFT) at the B3LYP/6‐31G(d) theory level. Seven conformational isomers, three of them presenting intramolecular hydrogen bonds, have been located. Thermochemical functions have been computed, and relative energies and free enthalpies have been determined in gas and aqueous phases. Several molecular properties have been calculated to predict the ability of aspirin to acylate cyclooxygenase (COX) enzymes. A six‐membered‐ring hydrogen‐bonded conformer was found to be the most reactive species. The solvation in aqueous phase increases the reactivity and strengthens intramolecular hydrogen bonding.  相似文献   

5.
The molecular structure and intramolecular hydrogen bond energies of 44 conformers of 2‐Amino methylene malonaldehyde were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set and AIM and NBO analysis. The calculated geometrical parameters and conformational analysis in gas phase show that the closed ring via intramolecular hydrogen bonded conformers of this compound are more stable than the other ones. Hydrogen bond energies for H‐bonded conformers were obtained from the related rotamers method (RRM) and Schuster method, and also the nature of H‐bonding of them has been investigated by means of the Bader theory of atoms in molecules, which is based on topological properties of the electron density. Delocalization effects can be identified from the presence of off diagonal elements of the Fock matrix in the NBO basis. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

6.
The molecular structure and intramolecular hydrogen bond energy of 32 conformers of 4‐methylamino‐3‐penten‐2‐one were investigated at MP2 and B3LYP levels of theory using the standard 6–31G** basis set and AIM analyses. Furthermore, calculations for all the possible conformations of 4‐methylamino‐3‐penten‐2‐one in water solution were also carried out at B3LYP/6–31G** level of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the ketoamine conformers of this compound are more stable than the other conformers (i.e., enolimine and ketoimine). This stability is mainly due to the formation of a strong N? H···O intramolecular hydrogen bond, which is assisted by π‐electrons resonance. Hydrogen bond energies for all conformers of 4‐methylamino‐3‐penten‐2‐one were obtained from the related rotamers method. The nature of intramolecular hydrogen bond existing within 4‐methylamino‐3‐penten‐2‐one has been investigated by means of the Bader theory of atoms in molecules, which is based on topological properties of the electron density. The results of these calculations support the results which obtained by related rotamers method. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

8.
An extensive exploration of the conformational space has been carried out to characterize all possible gas phase structures of leucine. A total of 324 unique trial structures for canonical leucine were generated by considering all possible combinations of single bond rotamers. All trial structures were optimized at the B3LYP/6-311G* level of the DFT method. A total of 77 unique and stationary canonical conformers were found. Further, 15 most stable conformers were reoptimized at B3LYP/6-311++G** level and their respective relative energies, vertical ionization energies, hydrogen bonding patterns, rotational constants and dipole moments were calculated. A single point energy calculations for leucine conformers have also been done at both B3LYP/6-311++G(2df, p) and MP2/6-311++G(2df, p) levels. The good agreement between our estimates of rotational constants for two most stable conformers and available experimental measurements supports the reliability of the B3LYP/6-311++G** level of theory for describing the conformational behavior of leucine molecule. The proton affinity and gas phase basicity were also determined. Using the statistical approach, conformational distributions at various temperatures have also been performed and analyzed. Vibrational spectra were also calculated. It is also observed that zwitterions of leucine are not stable in gas phase.  相似文献   

9.
耿静漪  国永敏  李宝宗 《化学研究》2009,20(3):98-100,107
用Hypercbem软件中构象搜寻模块,对氟比洛芬进行构象搜索,寻找分子低能构象.用B3LYP/6-31G(d)法优化计算22个低能构象,PCM溶剂模型用于水相计算,获得低能构象的优化几何结构、分子总能量和标准吉布斯自由能.结果表明,在气相和水相时,Z-型构象异构体稳定性最高.  相似文献   

10.
Ten low-lying conformers of beta-alanine have been studied by the hybrid density functional B3LYP/aug-cc-pVDZ method. Energetic extrapolation calculations at the MP3 and MP4(SDQ) levels of theory and the theoretical photoelectron spectra simulated with the electron propagation theory demonstrate that there are at least three gauche conformers (G1, G2, and G3) in gas-phase experiments. The calculated ionization potentials are in good agreement with the experimental data available in the literature. Natural bond orbital and atoms-in-molecules analyses exhibit a remarkable influence on the molecular electronic structures by the strong intramolecular hydrogen bonding O-H...N in the neutral conformer G2. Remarkable internal rotations of the COOH group are found in the cationic G1+ and G3+ with respect to the neutral conformers. A distonic [NH3+-(CH2)2-COO*] radical can be formed through the spontaneous intramolecular proton transfer in G2+. A novel intramolecular hydrogen bonding, C-H...O, is found in the anti A1+ cation.  相似文献   

11.
The conformational space of 1,2-ethanediol is studied on the basis of ab initio and semiempirical calculations. All possible conformers are treated. The relative energies of the conformers are systematically studied using various basis sets up to 6–311 + G(3df, 3pd) in order to perform calculations as accurate as possible within a reasonable amount of computer time. Electron correlation is included using Møller-Plesset perturbation theory. We propose two methods to evaluate the basis set superposition error associated with the intramolecular hydrogen bond appearing in some of the conformers. The results of semiempirical calculations are compared with these ab initio calculations. © 1996 by John Wiley & Sons, Inc.  相似文献   

12.
The conformations of 2-cyclopenten-1-ol (2CPOL) have been investigated by high-level theoretical computations and infrared spectroscopy. The six conformational minima correspond to specific values of the ring-puckering and OH internal rotation coordinates. The conformation with the lowest energy possesses intramolecular π-type hydrogen bonding. A second conformer with weaker hydrogen bonding has somewhat higher energy. Ab initio coupled-cluster theory with single and double excitations (CCSD) was used with the cc-pVTZ (triple-ζ) basis set to calculate the two-dimensional potential energy surface (PES) governing the conformational dynamics along the ring-puckering and internal rotation coordinates. The two conformers with the hydrogen bonding lie about 300 cm−1 (0.8 kcal/mole) lower in energy than the other four conformers. The lowest energy conformation has a calculated distance of 2.68 Å from the hydrogen atom on the OH group to the middle of the C=C double bond. For the other conformers, this distance is at least 0.3 Å longer. The infrared spectrum in the O-H stretching region agrees well with the predicted frequency differences between the conformers and shows the conformers with the hydrogen bonding to have the lowest values. The infrared spectra in other regions arise mostly from the two hydrogen-bonded species.  相似文献   

13.
The conformational space of (4)C(1) alpha- and beta-d-glucuronic acid was scanned by HF/3-21G(p) calculations followed by optimization of the 15 most stable structures for each, using the B3LYP density functional theory method in conjunction with a diffuse polarized valence triple-zeta basis set. We found a general preference of the alpha anomers in the isolated molecules in agreement with the large endo-anomeric hyperconjugation effects in these structures. From the other intramolecular interactions (exo-anomeric hyperconjugation, hydrogen-bonding, dipole-dipole, and steric interactions), the effect of the hydrogen bonding is the most pronounced and plays a major role in determining the stability order within the alpha and beta series. The most stable conformer of both alpha and beta (4)C(1) d-glucuronic acid is the structure with the maximum number (5) of intramolecular hydrogen bonds. Introduction of solvent (water) effects by the SCI-PCM model resulted in two characteristic changes of the energetic properties: the gas-phase stability order changed considerably, and the energy range of the 15 most stable conformers decreased from 30 to 15 kJ/mol. The geometrical parameters reflect well the superimposed effects of hyperconjugation and hydrogen-bonding interactions. Most characteristics are the variations of the C-O bond distances (within a range of 0.04 A) upon the combined intramolecular effects.  相似文献   

14.
The neurotransmitter analogue p-aminophenethylamine (APEA) illustrates many of the pitfalls and challenges associated with spectroscopic and conformational analysis of flexible molecules. The combined experimental-theoretical study presented here resolves a long-standing controversy over its conformational energetic preferences. Jet-cooled resonance enhanced two-photon ionisation (R2PI) and IR-UV ion depletion techniques enabled conformer-specific IR spectra in the NH-CH stretch region to be measured for four distinct conformers of APEA. Comparison of spectra with theoretical calculations (including MP2, M06-2X and B3LYP with aug-cc-pVTZ basis sets) allows the two most populated conformers to be unambiguously identified as those having a gauche arrangement of the side chain, which facilitates an NH···π type hydrogen bond. The other two observed conformers are assigned to structures with an anti-side chain. A fifth gauche conformer, predicted to be least stable, is not observed. Comparison with published conformer specific IR spectra of tyramine (Makara et al., J. Phys. Chem. A, 2008, 112, 13463-13469) and Raman spectra of phenylethylamine (Golan et al., J. Chem. Phys., 2009, 131, 024305) reveals an entirely consistent pattern of spectral signatures associated with the four specific conformations of the ethylamine side chain evident in APEA, and aids assignment of the associated CH and NH stretch fundamentals, some of which have very weak IR intensities. Extensive calculations of the relative energetic trends of the five conformers have been carried out. In comparison to the highest level of theory considered, CCSD(T)-F12b/cc-pVDZ-F12, MP2 overestimate the energy difference, whereas DFT significantly underestimates the energetic preference for NH···π stabilised gauche conformers, although inclusion of dispersion (M06-2X, B3LYP-D3) improves the DFT results.  相似文献   

15.
A density functional theory (DFT) and atoms-in-molecules (AIM) analysis has been applied to the intramolecular hydrogen bonding in the enol conformers of malonaldehyde and its fluoro-, chloro-, cyano-, and nitro-substituted derivatives. With the B3LYP/6-311++G(2d,p) method, good agreement between the DFT geometries and published experimental structures has been found. The donor-acceptor distance was also varied in a series of constrained optimizations in order to determine if energetic, structural, and topological trends associated with intermolecular hydrogen bonding remain valid in the intramolecular case. At very short donor-acceptor distances (<2.24 A), the hydrogen is symmetrically located between donor and acceptor; at distances longer than this, the hydrogen bonding is no longer symmetric. The AIM methodology has been applied to explore the topology of the electron density in the intramolecular hydrogen bonds of the chosen model systems. Most AIM properties for intramolecular hydrogen bond distances longer than 2.24 A show smooth trends, consistent with intermolecular hydrogen bonds. Integrated AIM properties have also been used to explore the phenomenon of resonance-assisted hydrogen bonding (RAHB). It is shown that as the donor-acceptor distance is varied, pi-electron density is redistributed among the carbon atoms in the intramolecular hydrogen bond ring; however, contrary to prior studies, the integrated atomic charges on the donor-acceptor atoms were found to be insensitive to variation of hydrogen-bonding distance.  相似文献   

16.
The low-lying conformers of N-/O-methylglycine are studied by ab initio calculations at the B3LYP, MP3, and MP4(SDQ) levels of theory with the aug-cc-pVDZ basis set. The conformers having the intramolecular hydrogen bonds N-H...O=C or O-H...N are more stable than the others. Vertical ionization energies for the valence molecular orbitals of each conformer predicted with the electron propagator theory in the partial third-order quasiparticle approximation are in good agreement with the experimental data available in the literatures. The relative energies of the conformers and comparison between the simulated and the experimental photoelectron spectra demonstrate that there are at least three and two conformers of N- and O-methylglycine, respectively, in the gas-phase experiments. The intramolecular hydrogen bonding O-H...N effects on the molecular electronic structures are discussed for the glycine methyl derivatives, on the basis of the ab initio electronic structure calculations, natural orbital bond, and atoms-in-molecules analyses. The intramolecular hydrogen bonding O-H...N interactions hardly affect the electronic structures of the O-NH2-CH2-C(=O)-O-CH3 and alpha-methylated NH2-CH2-C(CH3)OOH conformers, while the similar intramolecular interactions lead to the significantly lower-energy levels of the highest occupied molecular orbitals for the N-(CH3-NH-CH2-COOH) and beta-methylated (NH2-CH2-CH2-COOH) conformers.  相似文献   

17.
Ab initio geometry optimization was carried out on 10 selected conformations of maltose and two 2‐methoxytetrahydropyran conformations using the density functional denoted B3LYP combined with two basis sets. The 6‐31G* and 6‐311++G** basis sets make up the B3LYP/6‐31G* and B3LYP/6‐311++G** procedures. Internal coordinates were fully relaxed, and structures were gradient optimized at both levels of theory. Ten conformations were studied at the B3LYP/6‐31G* level, and five of these were continued with full gradient optimization at the B3LYP/6‐311++G** level of theory. The details of the ab initio optimized geometries are presented here, with particular attention given to the positions of the atoms around the anomeric center and the effect of the particular anomer and hydrogen bonding pattern on the maltose ring structures and relative conformational energies. The size and complexity of the hydrogen‐bonding network prevented a rigorous search of conformational space by ab initio calculations. However, using empirical force fields, low‐energy conformers of maltose were found that were subsequently gradient optimized at the two ab initio levels of theory. Three classes of conformations were studied, as defined by the clockwise or counterclockwise direction of the hydroxyl groups, or a flipped conformer in which the ψ‐dihedral is rotated by ∼180°. Different combinations of ω side‐chain rotations gave energy differences of more than 6 kcal/mol above the lowest energy structure found. The lowest energy structures bear remarkably close resemblance to the neutron and X‐ray diffraction crystal structures. © 2000 John Wiley & Sons, Inc. * J Comput Chem 21: 1204–1219, 2000  相似文献   

18.
Six stationary points of alaninamide have been located on the potential surface energy (PES) at the B3LYP/6‐311++G(2d,2p) level of theory both in the gas phase and in aqueous solution. In the aqueous solution, to take the water solvent effect into account, the polarizable continuum model (PCM) method has been used. Accurate geometric structures and their relative stabilities have been investigated. The results show that the intramolecular hydrogen bond plays a very important role in stabilizing the global minimum of the alaninamide. Moreover, the consistent result in relative energy using high‐level computations, including the MP2 and MP3 methods with the same basis set [6‐311++G(2d,2p)], indicates that the B3LYP/6‐311++G(d,p) level may be applied to the analogue system. More importantly, the optical rotation of the optimized conformers (both in the gas phase and in aqueous solution) of alaninamide have been calculated using the density functional theory (DFT) and Hartree–Fock (HF) method at various basis sets (6‐31+G*, 6‐311++G(d,p), 6‐311++G(2d,2p) and aug‐cc‐pvdz). The results show that the selection of the computation method and the basis set in calculation has great influence on the results of the optical rotations. The reliability of the HF method is less than that of DFT, and selecting the basis set of 6‐311++G(2d,2p) and aug‐cc‐pvDZ produces relative reliable results. Analysis of the computational results of the structure parameters and the optical rotations yields the conclusion that just the helixes in molecules caused the chiral molecules to be optical active. The Boltzmann equilibrium distributions for the six conformers (both in the gas phase and in the aqueous solution) are also carried out. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

19.
A large variety of gas phase conformations of the amino acids glycine, alanine, and cysteine is studied by numerically efficient semi-local gradient-corrected density functional theory calculations using a projector-augmented wave scheme and periodic boundary conditions. Equilibrium geometries, conformational energies, dipole moments, vibrational modes, and IR optical spectra are calculated from first principles. A comparison of our results with values obtained from quantum-chemistry methods with localized basis sets and nonlocal exchange-correlation functionals as well as with experimental data is made. For conformations containing strong intramolecular hydrogen bonds deviations in their energetic ordering occur, which are traced back to different treatments of spatial nonlocality in the exchange-correlation functional. However, even for these structures, the comparison of calculated and measured vibrational frequencies shows satisfying agreement.  相似文献   

20.
This study explores the structural properties and energy landscapes of the physiologically important bis(l -asparaginato)copper(II) [Cu(l -Asn)2] and (l -histidinato)(l -asparaginato)copper(II) [Cu(l -His)(l -Asn)]. The conformational analyses in the gas phase and implicitly modeled water medium, and magnetic parameters of electron paramagnetic resonance spectra were attained using density functional theory calculations. The apical CuII coordination and hydrogen bonding were analyzed. Predicted lower-energy structures enabled the confirmation and, for apical bonding, also the refinement of structural proposals from literature. Available experimental results were indecisive regarding the amido-group binding in the CuII equatorial plane in solutions, but the examination of the relative stability of Cu(l -Asn)2 conformers in 30 binding modes confirms the glycine-like mode as the most stable one. Previously reported experimental results for Cu(l -His)(l -Asn) were interpreted for l -His to have a tridentate histamine-like mode. However, the aqueous conformers with l -His in the glycinato mode are also predicted to have low energies, which does not contradict the tridentate l -His binding. The predicted magnetic parameters of conformers with an apical oxygen atom (intramolecular or from a water molecule) can reproduce the experimental data. An extent of conformational flexibility and abundance of l -His-containing ternary copper(II) amino acid complexes under physiological conditions may be related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号