首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
本文通过理论分析和数值模拟系统地研究了辐射热损失对球形火焰传播速度的影响。研究结果表明辐射热损失的影响分为直接影响和间接影响;直接影响指辐射热损失会降低火焰温度,从而降低火焰传播速度;间接影响指辐射热损失导致的冷却会引起逆向火焰传播的流动,从而降低火焰传播速度。对近可燃极限预混气体,直接影响起主导作用;对高辐射强度预混气体,间接影响起主导作用。本文研究的结果对球形火焰法测量火焰传播速度有着重要的指导意义。  相似文献   

2.
1引言在火焰中,辐射过程是一种重要的传热方式。对该过程尽可能精确的计算,对于改进燃烧设备的设计、改善设备的运行性能十分有益。在正常重力环境下,与其它的释热现象相比,预混火焰中的辐射热损失十分微弱,因而,过去对预混火焰的分析中,往往忽略了辐射热损失的影响。近年来,对微重力(ug)环境下的预混火焰的研究结果表明,可燃极限与#s最小点火能无关,自媳灭火焰(SEFs)发生时;其释放的能量比通常观察到的点火极限时的能量大几个数量级山,因此火焰伸张并不能解释“g环境下观察到的实验结果,辐射热损失可能是影响#g火焰可…  相似文献   

3.
微重力环境中空气流动与辐射热损失对火焰传播的影响   总被引:4,自引:0,他引:4  
本文建立了包含辐射热损失的火焰沿热薄燃料表面传播的数学模型。燃毁点的密度作为待求参数出现在模型中。数值计算结果表明,在微重力环境中,火焰传播速度随空气流动速度的变化出现峰值。对比无辐射热损失模型和有辐射热损失模型的计算结果发现,辐射热损失是形成上述微重力燃烧特征的原因。在静止的微重力环境中或弱空气流动速度下,辐射热损失使燃毁点处有大量的残碳生成,但随着空气流动速度的增大,残碳生成量迅速减小。  相似文献   

4.
地面常重力(1g)条件下,丙烷/空气预混火焰向上传播的富燃极限为9.2%C_3H_8,而向下传播时的富燃极限仅为6.3%C_3H_8,二者之间存在明显差距。利用微重力条件下的实验,对燃料浓度从6.5%到8.6%(微重力实验中测定的可燃极限)范围内的丙烷/空气预混火焰特性进行了研究。实验发现,重力对近极限丙烷/空气火焰的传播有显著影响,影响程度随着当量比的增加而增大。微重力下丙烷/空气的富燃极限为8.6%C_3H_8(φ=2.24),明显高于1g条件下向下传播火焰的可燃极限,略低于向上传播火焰的可燃极限。随着当量比的增大,根据压力变化曲线计算的火焰层流燃烧速度从8.5cm/s逐渐减小到2.7 cm/s,可燃极限处的层流燃烧速度与前人实验数据一致。  相似文献   

5.
本文分别采用考虑辐射重吸收的谱带辐射(SNBCK)模型及未考虑辐射重吸收的光学薄辐射(OPT)模型,对0.1~4 MPa,CO2稀释比为0%和20%的一维预混层流合成气/空气火焰进行数值分析,研究辐射重吸收效应对可燃极限及极限处的火焰传播速度和温度的影响。结果表明,辐射重吸收效应能有效拓宽贫可燃极限,提高燃料中CO2比例或提高CO/H2比例都会加剧上述效果。辐射重吸收效应随压力增大而逐渐增强,并造成可燃极限处最大火焰温度随压力先增加后减小,在1 MPa左右达到峰值。  相似文献   

6.
本文采用OH-PLIF探测系统对在McKenna平面火焰炉上产生CH_4/H_2/CO_2/O_2细胞状火焰进行了定量测量和分析。研究发现,平面火焰在稀燃极限附近会出现胞状结构,细胞数量随当量比/掺氢比的增加而增加,主要是由火焰自身不稳定性导致。同时我们通过OH-PLIF图片定量提取并定义了相关参数以表征平面火焰的不稳定程度,并发现随着火焰悬浮距离的减少火焰趋向于稳定,火焰对炉面的热损失有抑制不稳性发生的作用。通过线性理论分析,我们发现RS模型能够很好预测火焰稳定性随当量比变化趋势,但无法预测随掺氢比的变化趋势。在掺氢状态下,火焰面离炉面更近,炉面对火焰不稳定性的抑制作用不可忽视,故理论模型对掺氢影响的预测失效。  相似文献   

7.
采用CHEMKIN的PREMIX模块对非常压下贫燃侧的一维、层流CH4/Air预混火焰进行数值模拟,分析了不同的压力下辐射引起的最高火焰温度损失、主要反应的敏感性系数和主要自由基摩尔分数的变化。结果表明,辐射热损失随着当量比的下降而加强,在非单调变化的拐点附近,热辐射损失对最高火焰温度的相对变化作用明显加强。随着压力增...  相似文献   

8.
采用数值模拟方法研究了静止微重力环境中,表面辐射热损失对燃料表面火焰传播特性的影响以及表面辐射和压力对火焰传播特性的共同影响。结果表明,随着表面辐射增大,火焰传播速度减小,在考虑表面辐射后,随着压力的增大,火焰传播速度增大。采用无量纲参数分析了表面辐射对火焰传播速度的影响,进一步阐明了微重力环境下的火焰传播机理。  相似文献   

9.
制冷剂的可燃性在一定程度上限制了其使用范围。通过基团贡献法分析了阻燃剂对可燃工质的抑制系数,结合燃烧学理论,对火焰传播速度和卤素工质的浓度变化关系进行了分析,得到了混合工质中阻燃剂的最小惰化浓度理论估算公式。对二元混合工质爆炸极限进行了实验研究,结果表明,可燃制冷剂在化学计量浓度下,当火焰传播速度准确时,理论估算值和实...  相似文献   

10.
作者利用渗透性材料制成圆柱,从中向外渗出可燃气,把它置于风洞中点燃,用普通摄影和激光干涉摄影拍摄了各个工况下的火焰形状,并测出CO_2,CO,N_2,O_2等气体的浓度分布,速度场,温度场和湍流度分布,以研究雷诺数从0到10~5时火焰结构的发展;研究渗透量和吹熄速度之间的关系。实验结果表明:随着雷诺数不断增大,围绕渗透出可燃气体的圆柱强迫对流时的火焰从全包型转变成尾流型,火焰从扩散型转变成预混型;提高可燃气体的渗透量可以提高吹熄速度;用最大化学反应速率所求出的最佳混气比恰恰出现在火焰的锋面上。  相似文献   

11.
Ammonia (NH3) direct combustion is attracting attention for energy utilization without CO2 emissions, but fundamental knowledge related to ammonia combustion is still insufficient. This study was designed to examine effects of radiation heat loss on laminar ammonia/air premixed flames because of their very low flame speeds. After numerical simulations for 1-D planar flames with and without radiation heat loss modeled by the optically thin model were conducted, effects of radiation heat loss on flame speeds, flame structure and emissions were investigated. Simulations were also conducted for methane/air mixtures as a reference. Effects of radiation heat loss on flame speeds were strong only near the flammability limits for methane, but were strong over widely diverse equivalence ratios for ammonia. The lower radiative flame temperature suppressed the thermal decomposition of unburned ammonia to hydrogen (H2) at rich conditions. The equivalence ratio for a low emission window of ammonia and nitric oxide (NO) in the radiative condition shifted to a lower value than that in the adiabatic condition.  相似文献   

12.
It has been shown both theoretically and experimentally that combustion within porous inert media can extend the flammability limits of reactant mixtures for unstretched stationary premixed flames. However little attention has been given to flames within porous media submitted to stretch conditions. This work presents a closed form approximate analytical solution for the problem of ultra-lean premixed flames within porous inert media subjected to small stretch rates in an impinging flow configuration against a constant temperature wall. The solution is obtained using the method of matched asymptotic expansions taking advantage of the large difference between the solid- and gas-phase thermal conductivities. The model allows for thermal nonequilibrium between the phases and is able to predict the flame temperature, velocity and position as function of the stretch rate. The results show that within porous media low stretch rates may increase the flame temperature, further extending the lean flammability limit of the reactant mixture when compared to planar flames. The model is restricted to low porosities, low stretch rates, low heat losses and intense interphase heat transfer.  相似文献   

13.
The foundations of a relatively simple two-step kinetic scheme for flame chemistry are outlined, involving a model chain branching process that should adopt the activation temperature of a rate-limiting branching reaction in order to offer a broad approximation for hydrocarbon flames. A model energetic intermediate reactant then acts as a buffer between fuel consumption and the release of heat, as the intermediate is converted into products through a completion reaction step. By taking the rate of the latter reaction to be linear in the concentration of the intermediate, which is consistent with the final state being an equilibrium in a broader chemical system, a form of the model is arrived at which admits asymptotic solutions in a thermodiffusive context with constant coefficients. These are developed to second order for large values of the activation energy of the branching reaction and are found to involve the same trends that are seen for lean methane and hydrogen flames calculated using detailed chemical and transport models. Linear stability analysis identifies the ranges of Lewis numbers in which cellular or oscillatory instability can arise, with the latter form of instability disappearing above a threshold heat of reaction. These and the underlying flame solutions themselves depend on the heat of reaction and the degree of heat loss but not on the activation temperature of the branching reaction, to leading order. Near the limit of flammability a direct parallel arises with one-step kinetic models for premixed flames.  相似文献   

14.
Extinction limits and flame bifurcation of lean premixed dimethyl ether–air flames are numerically investigated using the counterflow flame with a reduced chemistry. Emphasis is paid to the combined effect of radiation and flame stretch on the extinction and flammability limits. A method based on the reaction front is presented to predict the Markstein length. The predicted positive Markstein length agrees well with the experimental data. The results show that flow stretch significantly reduces the flame speed and narrows the flammability limit of the stretched dimethyl ether–air flame. It is found that the combined effect of radiation and flow stretch results in a new flame bifurcation and multiple flame regimes. At an equivalence ratio slightly higher than the flammability limit of the planar flame, the distant flame regime appears at low stretch rates. With an increase in the equivalence ratio, in addition to the distant flame, a weak flame isola emerges at moderate stretch rates. With a further increase in the equivalence ratio, the distant flame and the weak flame branches merge together, resulting in the splitting of the weak flame branch into two weak flame branches, one at low stretch and the other at high stretch. Flame stability analysis demonstrates that the high stretch weak flame is also stable. Furthermore, a K-shaped flammability limit diagram showing various flame regimes and their extinction limits is obtained.  相似文献   

15.
Mesoscale flame propagation and extinction of premixed flames in channels are investigated theoretically and experimentally. Emphasis is placed on the effect of wall heat loss and the wall–flame interaction via heat recirculation. At first, an analytical solution of flame speed in mesoscale channels is obtained. The results showed that channel width, flow velocity, and wall thermal properties have dramatic effects on the flame propagation and lead to multiple flame regimes and extinction limits. With the decrease in channel width, there exist two distinct flame regimes, a fast burning regime and a slow burning regime. The existence of the new flame regime and its extended flammability limit render the classical quenching diameter inapplicable. Furthermore, the results showed that at optimum conditions of flow velocity and wall thermal properties, mesoscale flames can propagate faster than the adiabatic flame. Second, numerical simulation with detailed chemistry demonstrated the existence of multiple flame regimes. The results also showed that there is a non-linear dependence of the flame speed on equivalence ratio. Moreover, it is shown that the Nusselt number has a significant impact on this non-linear dependence. Finally, the non-linear dependence of flame speed on equivalence ratio for both flame regimes is measured using a C3H8–air mixture. The results are in good agreement with the theory and numerical simulation.  相似文献   

16.
The present study experimentally investigates the structure and instabilities associated with extremely low-stretch (1 s−1) gaseous diffusion flames. Ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. OH-PLIF and IR imaging techniques are used to characterize the reaction zone and the burner surface temperature, respectively. A flame stability diagram mapping the response of the ultra-low-stretch diffusion flame to varying fuel injection rate and nitrogen dilution is explored. In this diagram, two main boundaries are identified. These boundaries separate the stability diagram into three regions: sooting flame, non-sooting flame, and extinction. Two distinct extinction mechanisms are noted. For low fuel injection rates, flame extinction is caused by heat loss to the burner surface. For relatively high injection rates, at which the heat loss to burner surface is negligible, flame radiative heat loss is the dominant extinction mechanism. There also exists a critical inert dilution level beyond which the flame cannot be sustained. The existence of multi-dimensional flame phenomena near the extinction limits is also identified. Various multi-dimensional flame patterns are observed, and their evolutions are studied using direct chemiluminescence and OH-PLIF imaging. The results demonstrate the usefulness of the present burner configuration for the study of low-stretch gaseous diffusion flames.  相似文献   

17.
This paper presents a numerical study of ultra-lean hydrogen-methane flames stabilized behind a rectangular, highly conducting metallic bluff body acting as a flame holder. Using high fidelity numerical simulations, we show that lean inverted steady flames exist below normal flammability limits. They have distinct stabilization mechanism from pure methane flames. These flames are blown-off for sufficiently small velocities, a phenomenon called anomalous blow-off. At even leaner conditions oscillating ultra–lean hydrogen-methane flames can be established. These oscillating flames exist within a rather small range of equivalence ratios and inflow velocities, and move to mean locations closer to the flame holder as the reactant flow is increased. We show that the oscillations are associated with the shedding of flame balls from the downstream end of a “residual flame” that remains attached. Unlike their steady counterparts, the oscillating flames exhibit blow-off at both low velocities (anomalous blow-off) and at sufficiently high inflow velocities (normal blow-off). We show that normal blow-off is linked to heat losses to the flame holder.  相似文献   

18.
Stationary combustion regimes, their linear stability and extinction limits of stretched premixed flames in a narrow gap between two heat conducting plates are studied by means of numerical simulations in the framework of one-dimensional thermal-diffusion model with overall one-step reaction. Various stationary combustion modes including normal flame (NF), near-stagnation plane flame (NSF), weak flame (WF) and distant flame (DF) are detected and found to be analogous to the same-named regimes of conventional counterflow flames. For the flames stabilized in the vicinity of stagnation plane at moderate and large stretch rates (which are NF, NSF and WF) the effect of channel walls is basically reduced to additional heat loss. For distant flame characterized by large flame separation distance and small stretch rates intensive interphase heat transfer and heat recirculation are typical. It is shown that in mixture content / stretch rate plane the extinction limit curve has ε-shape, while for conventional counterflow flames it is known to be C-shaped. This result is quite in line with recent experimental findings and is explained by extension of extinction limits at small stretch rates at the expense of heat recirculation. Analysis of the numerical results makes possible to reveal prime mechanisms of flame quenching on different branches of ε-shaped extinction limit curve. Namely, two upper limits are caused by stretch and heat loss. These limits are direct analogs of the upper and lower limits on conventional C-shaped curve. Two other limits are related with weakening of heat recirculation and heat dissipation to the burner. Thus, the present study provides a satisfactory explanation for the recent experimental observations of stretched flames in narrow channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号