首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

2.
A novel tandem time-of-flight (TOF) mass spectrometer has been developed for studying the photo-induced dissociation of large molecules and elemental clusters. It consists of a linear first stage TOF analyser for primary mass separation and precursor ion selection, and a second orthogonal reflecting field TOF analyser for product ion analysis. The instrument is equipped with a large volume throughput molecular beam source chamber allowing the production of jet-cooled molecules and molecular clusters, as well as elemental clusters, using either a pulsed laser vaporisation source (LVS) or a pulsed are cluster ion source (PACIS). A second differentially pumped chamber can be used with effusive sources, or for infrared laser desorption of large molecules, followed by laser ionisation. These primary ions can then be irradiated with a second, high energy laser to induce photodissociation. Detailed information about the fragmentation mechanisms can be deduced from the product ion mass spectra. Preliminary results on the photo-induced dissociation (PID) of the molecule ion of aniline at 266 nm are presented. In this case the molecule ions were generated via two-photon laser ionisation at 266 nm using an effusive source. Results for the collision-induced dissociation (CID) of the aniline molecule ion, using a commercial mass spectrometer equipped with an atmospheric pressure electrospray ionisation interface, are also presented. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

3.
In‐source collision‐induced dissociation (CID) is commonly used with single‐stage high‐resolution mass spectrometers to gather both a molecular formula and structural information through the collisional activation of analytes with residual background gas in the source region of the mass spectrometer. However, unlike tandem mass spectrometry, in‐source CID does not involve an isolation step prior to collisional activation leading to a product ion spectrum composed of fragment ions from any analyte present during the activation event. This work provides the first comparison of in‐source CID and beam‐type CID spectra of emerging synthetic drugs on the same instrument to understand the fragmentation differences between the two techniques and to contribute to the scientific foundations of in‐source CID. Electrospray ionization–quadrupole time‐of‐flight (ESI‐Q‐TOF) mass spectrometry was used to generate product ion spectra from in‐source CID and beam‐type CID for a series of well‐characterized fentanyl analogs and synthetic cathinones. A comparison between the fragmentation patterns and relative ion abundances for each technique was performed over a range of fragmentor offset voltages for in‐source CID and a range of collision energies for beam‐type CID. The results indicate that large fragmentor potentials for in‐source CID tend to favor higher energy fragmentation pathways that result in both kinetically favored pathways and consecutive neutral losses, both of which produce more abundant lower mass product ions relative to beam‐type CID. Although conditions can be found in which in‐source CID and beam‐type CID provide similar overall spectra, the in‐source CID spectra tend to contain elevated noise and additional chemical background peaks relative to beam‐type CID.  相似文献   

4.
This paper describes a method for the fast identification and composition of disulfide-bonded peptides. A unique fragmentation signature of inter-disulfide-bonded peptides is detected using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry and high-energy collision-induced dissociation (CID). This fragmentation pattern identifies peptides with an interconnected disulfide bond and provides information regarding the composition of the peptides involved in the pairing. The distinctive signature produced using CID is a triplet of ions resulting from the cleavage of the disulfide bond to produce dehydroalanine, cysteine or thiocysteine product ions. This method is not applicable to intra-peptide disulfide bonds, as the cleavage mechanism is not the same and a triplet pattern is not observed. This method has been successfully applied to identifying disulfide-bonded peptides in a number of control digestions, as well as study samples where disulfide bond networks were postulated and/or unknown.  相似文献   

5.
The technique of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) is described and examples are given of its use for the examination of glycoproteins, glycopeptides, glycolipids and oligosaccharides. Abundant [M + H]+ ions are produced by the glycoproteins and glycopeptides, whereas glycolipids and oligosaccharides give mainly [M + Na]+ ions. Resolution on time-of-flight (TOF) instruments is poor but improved resolution can be obtained by use of ion cyclotron resonance or magnetic sector instruments. Although the technique gives mainly [M + Na]+ ions from neutral, underivatised oligosaccharides, with little fragmentation when implemented on TOF systems, the use of a reflectron enables fragment ions produced by post-source decay to be obtained. Acidic sugars give less satisfactory positive ion spectra with TOF analysers. but generally produce abundant negative ions. Extensive fragmentation is observed with these compounds when the spectra are recorded with magnetic sector instruments. Neutral glycolipids produce strong spectra from several matrices but acidic glycolipids show extensive fragmentation as the result of sialic acid loss.  相似文献   

6.
In the present work, a rapid and novel method of on-target plate derivatization of keratan sulfate (KS) oligosaccharides for subsequent analysis by matrix-assisted laser desorption and ionization (MALDI) mass spectrometry is described. MALDI-(time-of-flight)-TOF spectra of labeled KS oligosaccharides revealed that significantly improved ionization can be accomplished through derivatization with pyrenebutyric acid hydrazide (PBH), and the most abundant peak in each spectrum corresponds to the singly charged molecular ion [M - H]- or [M + (n - 1)Na - nH]-, where n = the number of sulfates (n = 1, 2, 3...). The high-energy collision-induced dissociation (heCID) spectra of labeled KS oligosaccharides displayed fragments of compounds similar to those observed with laser-induced dissociation (LID) analysis, suggesting that both heCID and LID fragmentations can be used to analyze KS oligosaccharides. Moreover, fragmentation analysis of all labeled KS oligosaccharides was performed by MALDI-TOF/TOF-MS. With LID mode, sodium adducts showed fragmentation of glycosidic linkages with mainly Y/B/C ions, as well as various cross-ring cleavages providing exact information for the positions of sulfate groups along the KS oligosaccharide chains. This one-step on-target derivatization method makes MALDI-TOF/TOF-MS identification of KS fast, simple and highly throughput for trace amounts of biological samples.  相似文献   

7.
De novo sequencing of peptides using tandem MS is difficult due to missing fragment ions in the spectra commonly obtained after CID of peptide precursor ions. Complementing CID spectra with spectra obtained in an ion‐trap mass spectrometer upon electron transfer dissociation (ETD) significantly increases the sequence coverage with diagnostic ions. In the de novo sequencing algorithm CompNovo presented here, a divide‐and‐conquer approach was combined with an efficient mass decomposition algorithm to exploit the complementary information contained in CID and ETD spectra. After optimizing the parameters for the algorithm on a well‐defined training data set obtained for peptides from nine known proteins, the CompNovo algorithm was applied to the de novo sequencing of peptides derived from a whole protein extract of Sorangium cellulosum bacteria. To 2406 pairs of CID and ETD spectra contained in this data set, 675 fully correct sequences were assigned, which represent a success rate of 28.1%. It is shown that the CompNovo algorithm yields significantly improved sequencing accuracy as compared with published approaches using only CID spectra or combined CID and ETD spectra.  相似文献   

8.
Pulsed Q collision induced dissociation (PQD) was developed to facilitate detection of low-mass reporter ions from labeling reagents (e.g., iTRΑQ) in peptide quantification using an LTQ mass spectrometer (MS). Despite the large number of linear ion traps worldwide, the use and optimization of PQD for protein identification have been limited, in part due to less effective ion fragmentation relative to the collision induced dissociation (CID). PQD expands the m/z coverage of fragment ions to the lower m/z range by circumventing the typical low mass cut-off of an ion trap MS. Since database searching relies on the matching between theoretical and observed spectra, it is not clear how ion intensity and peak number might affect the outcomes of a database search. In this report, we systematically evaluated the attributes of PQD mass spectra, performed intensity optimization, and assessed the benefits of using PQD on the identification of peptides and phosphopeptides from an LTQ. Based on head-to-head comparisons between CID (higher intensity) and PQD (better m/z coverage), peptides identified using PQD generally have Xcorr scores lower than those using CID. Such score differences were considerably diminished by the use of 0.1% m-nitrobenzyl alcohol (m-NBA) in mobile phases. The ion intensities of both CID and PQD were adversely affected by increasing m/z of the precursor, with PQD more sensitive than CID. In addition to negating the 1/3 rule, PQD enhances direct bond cleavage and generates patterns of fragment ions different from those of CID, particularly for peptides with a labile functional group (e.g., phosphopeptides). The higher energy fragmentation pathway of PQD on peptide fragmentation was further compared to those of CID and the quadrupole-type activation in parallel experiments.  相似文献   

9.
Sequences and end groups of complex copolyesters were determined by fragmentation analysis by means of matrix‐assisted laser desorption/ionization collision‐induced dissociation tandem mass spectrometry (MALDI CID MS/MS). The complexity of the crude copolyester mixture was reduced by a chromatographic separation followed by a MALDI time‐of‐flight (TOF) investigation of fractions. Due to overlapping compositional and end‐group information a clear assignment of end groups was very difficult. However, the fragmentation of suitable precursor ions resulted in typical fragment ion patterns and, therefore, enabled a fast and unambiguous determination of the end groups and composition of this important class of polymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The present study describes the use of electrospray ionisation mass spectrometry, in combination with collision-induced dissociation (CID) and tandem mass spectrometry, for the structural characterisation of anthocyanidins and their O-glycosides. The high-energy CID spectra of [M-Cl](+) ions of the free aglycones show characteristic fragmentation pathways, which provide useful information about the substitution pattern in the A- and B-rings of each compound. The major fragmentation observed in the high-energy CID spectra of [M-Cl](+) ions of anthocyanins involves loss of the mono- or disaccharide units resulting in ions containing only the aglycone moiety. From the spectral data, the identity of the aglycone can be established as well as the number and the class of monosaccharide units in the O-glycosides.  相似文献   

11.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

12.
Structure analyses of underivatized neutral lacto oligosaccharides are systematically performed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI TOF MS) and UV-MALDI ion-trap time-of-flight mass spectrometry (ion-trap/TOF MS) acquired in negative-ion mode. Interestingly, their fragmentation significantly differ each other. In postsource decay (PSD) in UV-MALDI TOF MS, cross-ring cleavage at the reducing terminal predominates. On the other hand, glycosyl bond cleavage (C-type fragmentation) takes place preferentially in collision induced dissociation (CID) in UV-MALDI ion-trap/TOF MS. The cross-ring cleavage in PSD similar to that in in-source decay occurs via a prompt reaction path characteristic of the UV-MALDI process itself. The product ion spectra of UV-MALDI ion-trap/TOF MS are similar to the electrospray ionization (ESI) ion-trap or quadrupole/TOF CID product ion spectra. During ion-trap/TOF MS experiments, the deprotonated molecular ions survive for several tens of milliseconds after CID event because the high internal energy chlorinated precursor ions are cooled by collisional cooling in the ion trap. The results obtained suggest that the PSD from the chlorinated precursor ion in UV-MALDI TOF MS might proceed as a two-step reaction; in the first, a high internal energy deprotonated molecular ion is generated as a reaction intermediate during the flight in the drift tube, and in the second, the rapid decomposition from the deprotonated molecular ion takes place.  相似文献   

13.
Data are reported on the effects of internal energy and angular momentum on the collision induced dissociation CID fragmentation pattern. For the ions studied changes in the relative intensities of the fragment ions as internal energy varied were found to be larger than suggested by McLafferty and coworkers. Possible effects of angular momentum on the CID fragmentation pattern are discussed. The charge stripping spectra of the ions studied were found to be strongly dependent on initial energy and/or angular momentum. Hence care must be taken if charge stripping spectra are used to distinguish ion structures.  相似文献   

14.
The use of a high-performance orthogonal time-of-flight (o-TOF) mass spectrometer for sequence analysis is described. The mass spectrometer is equipped with a matrix-assisted laser desorption/ionization (MALDI) source that operates at elevated pressure, 0.01-1 Torr. Ion fragmentation is controlled by varying the pressure of the buffer gas, the laser energy, the voltage difference between the MALDI target and the adjacent sampling cone, and between the cone and the quadrupole ion guide. The peptides were analyzed under optimal ionization conditions to obtain their molecular mass, and under conditions that promote ion dissociation via metastable decomposition or collision-induced dissociation (CID). The fragmentation spectra were used to obtain sequence information. Ion dissociation was promoted via three configurations of the ionization parameters. All methods yielded sequencing-grade b- and y-type ions. Two binary mixtures of peptides were used to demonstrate that: (1) external calibration provides a standard deviation (sigma) of 4 ppm with a mode of 9 ppm; and (2) that peptides with molecular masses that differ by a factor of two may be independently fragmented by appropriately choosing the CID energy and the low-mass cut-off. Analyses of tryptic digests employed liquid chromatography (LC), deposition of the eluant on a target, and finally MALDI-TOF mass spectrometry. The mass fingerprint and the (partial) sequence of the tryptic peptides were matched to their precursor protein via database searches.  相似文献   

15.
Ion activation methods for tandem mass spectrometry   总被引:7,自引:0,他引:7  
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.  相似文献   

16.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds.  相似文献   

17.
A new tandem time‐of‐flight mass spectrometer with an electrospray ionization ion source ‘ESI‐TOF/quadTOF’ was designed and constructed to achieve the desired aim of structural elucidation via high‐energy collision‐induced dissociation (CID), and the simultaneous detection of all fragment ions. The instrument consists of an orthogonal acceleration‐type ESI ion source, a linear TOF mass spectrometer, a collision cell, a quadratic‐field ion mirror and a microchannel plate detector. High‐energy CID spectra of doubly protonated angiotensin II and bradykinin were obtained. Several fragment ions such as a‐, d‐, v‐ and w‐type ions, characteristic of high‐energy CID, were clearly observed in these spectra. These high‐energy CID fragment ions enabled confirmation of the complete sequence, including leucine–isoleucine determinations. It was demonstrated that high‐energy CID of multiply protonated peptides could be achieved in the ESI‐TOF/quadTOF. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
An ion trap/time-of-flight (IT/TOF) mass spectrometer was developed and applied to infrared multiphoton dissociation (IRMPD) studies of ions generated by electrospray ionization. A pulsed 10.6- micro m laser beam from a CO(2) laser was used for excitation of trapped ions. Results from IRMPD of peptide ions show that this method provides useful information related to the amino acid sequence of analyzed peptides. Comparative studies show that IRMPD spectra are similar to those obtained using a 266-nm UV laser beam for excitation. However, in contrast to multiple-pulse excitation required at 266 nm, the energy of a single laser pulse in IRMPD is sufficient to induce dissociation of peptide ions. The laser power is practically an exclusive parameter that must be controlled in order to obtain IRMPD spectra that will provide the optimal structural information. It is further demonstrated that the IRMPD IT/TOF technique has the potential to probe the structural features of larger ions that cannot be readily fragmented by collision-induced dissociation (CID). A multiply charged ion of equine cytochrome c is successfully fragmented in a single laser pulse experiment. The IRMPD IT/TOF technique is also shown to be a promising tool for studying dissociation kinetics of peptide and protein ions. Unlike other methods that usually monitor the dissociation ion kinetics in a dissociation time frame of greater than milliseconds, the IT/TOF can promptly detect all product ions generated by the dissociation process, and thus monitor the dissociation process of peptides and proteins in a sub-millisecond time frame. This instrument allows us to determine the dissociation rates of cytochrome c ions using high-energy photoexcitation. It is found that the charge state of the protein ion has a significant effect on dissociation kinetics, which is consistent with that found under low-energy excitation experiments. It is shown that the increase in energy of a laser pulse from 130 to 180 mJ changes the dissociation rate constant for the +12 ion from k = 2.4 x 10(3) x s(-1) to k = 7.3 x 10(4) x s(-1). The +8 ion following excitation at 130 mJ dissociates slower with a rate constant of k = 2.6 x 10(2) x s(-1). The rate difference observed is attributed to conformational differences among the ions with different charge states.  相似文献   

19.
High-energy collision-induced dissociation (CID) experiments on polycyclic aromatic hydrocarbons (PAHs) having 2-6 rings, naphthalene, anthracene, phenanthrene, fluoranthene, pyrene and coronene, were performed, and the relative abundances of their fragment ions were investigated as a function of collision energy. The results revealed that the PAHs except naphthalene showed a bimodal-type distribution of positive fragmentation ions, which is closely similar to the fragment-ion distribution reported for the CID of three-dimensional fullerene, C(60)(+) and C(70)(+). The three-ring isomers of anthracene and phenanthrene and the four-ring isomers of fluoranthene and pyrene can be distinguishable in their spectra under an electron ionization energy of 70 eV, but the high-energy CID spectra of the three- and four-ring isomers were almost identical. The fragmentation corresponding to fragment ions in the low-mass region of the bimodal CID spectra could be interpreted by the simple statistical model that fragment ions are formed by random evaporation from the molecular ions after a considerable structural rearrangement, 'phase transition', occurring at some high-energy state.  相似文献   

20.
Various classes of polypeptide antibiotics, including blocked linear peptides (gramicidin D), side-chain-cyclized peptides (bacitracin, viomycin, capreomycin), side-chain-cyclized depsipeptides (virginiamycin S), real cyclic peptides (tyrocidin, gramcidin S) and side-chain-cyclized lipopeptides (polymyxin B and E, amfomycin), were investigated by low-energy collision induced dissociation (LE-CID) as well as high-energy CID (HE-CID). Ion trap (IT) based instruments with different desorption/ionization techniques such as electrospray ionization (ESI), atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) and vacuum MALDI (vMALDI) as well as a vMALDI-time-of-flight (TOF)/curved field-reflectron instrument fitted with a gas collision cell were used. For optimum comparability of data from different IT instruments, the CID conditions were standardized and only singly charged precursor ions were considered. Additionally, HE-CID data obtained from the TOF-based instrument were acquired and compared with LE-CID data from ITs. Major differences between trap-based and TOF-based CID data are that the latter data set lacks abundant additional loss of small neutrals (e.g. ammonia, water) but contains product ions down to the immonium-ion-type region, thereby allowing the detection of even single amino-acid (even unusual amino acids) substitutions. For several polypeptide antibiotics, mass spectrometric as well as tandem mass spectrometric data are shown and discussed for the first time, and some yet undescribed minor components are also reported. De novo sequencing of unusually linked minor components of (e.g. cyclic) polypeptides is practically impossible without knowledge of the exact structure and fragmentation behavior of the major components. Finally, the described standardized CID condition constitutes a basic prerequisite for creating a searchable, annotated MS(n)-database of bioactive compounds. The applied desorption/ionization techniques showed no significant influence on the type of product ions (neglecting relative abundances of product ions formed) observed, and therefore the type of analyzer connected with the CID process mainly determines the type of fragment ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号