首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ba-induced quasi-one-dimensional reconstructions of the Si(1 1 1) surface have been investigated by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the 3 × ‘2’ surface shows double-periodicity along the stripes in STM images consistent with half-order streaks observed in LEED patterns, no sign of the double-periodicity along the chain direction was detected for the 5 × 1 surface. The 5× stripes in STM images show internal structures with multiple rows. The two rows comprising the boundaries of a 5× stripe in the filled-state STM image are found to have 3a × √3/2 spacing across the stripe. The observation of the successive 3× and 2× spacings between the boundary rows supports a structural model proposed for the Ba-induced 5 × 1 Si reconstruction composed of honeycomb chains and Seiwatz chains. The highest coverage 2 × 8 surface does not reveal a quasi-1D row structure in STM images.  相似文献   

2.
An extensive search for possible structural models of the (2 × 1)-reconstructed rutile TiO2(0 1 1) surface was carried out by means of density functional theory (DFT) calculations. A number of models were identified that have much lower surface energies than the previously-proposed ‘titanyl’ and ‘microfaceting’ models. These new structures were tested with surface X-ray diffraction (SXRD) and voltage-dependent STM measurements. The model that is (by far) energetically most stable shows also the best agreement with SXRD data. Calculated STM images agree with the experimental ones for appropriate tunneling conditions. In contrast to previously-proposed models, this structure is not of missing-row type; because of its similarity to the fully optimized brookite TiO2(0 0 1) surface, we call it the ‘brookite (0 0 1)-like’ model. The new surface structure exhibits two different types of undercoordinated oxygen and titanium atoms, and is, in its stoichiometric form, predicted to be rather inert towards the adsorption of probe molecules.  相似文献   

3.
Thermal (300 K) and electron-induced reactions of benzene (Bz), chlorobenzene (ClPh), 1,2-dichlorobenzene (1,2-diClPh) and 1,4-dichlorobenzene (1,4-diClPh) with Si(1 0 0)2 × 1 have been examined by scanning tunneling microscopy (STM). Thermal reactions of Bz yielded predominantly the quadruply-σ-bound tight bridge, TB, configuration on top of the Si dimer-rows, For ClPh and 1,2-diClPh, which resembled one another, thermal reaction led with 45-50% yield to the doubly-σ-bound butterfly, BF, configuration, also on top of the dimer-row, and with 20% yield to a novel ‘displaced’, D, configuration to one side of a dimer-row. The adsorbate 1,4-diClPh was alone in favouring a configuration in which neighbouring dimer-rows were ‘linked’ (L) by a bright-feature centrally located between the dimer-rows. By ab initio calculation, we interpret D as due to the rupture of one C-Cl bond per adsorbate molecule, and L to the rupture of two C-Cl’s. The breaking of this weak bond is followed in the former case by attachment of the aromatic ring to one dimer-row, and in the latter to attachment to two adjacent dimer-rows. Application of a −5 V voltage pulse to the STM tip substantially increased the percentage of row-linking structures, L, for 1,4-diClPh, but neither −5 V nor +4-6 V volt pulses resulted in L-type binding of Bz. The postulated L product of 1,4-diClPh, with an aromatic ring linking the two inner Si atoms of adjacent dimer-rows and the two Cl’s on the outer Si atoms of the dimer-rows, is shown to be in accord with ab initio simulation of the observed STM image.  相似文献   

4.
CoxPt1−x nanostructures with varying composition and controllable morphologies have been synthesized through the thermal decomposition of appropriate platinum and cobalt precursors in organic solvents. The employment of several different surfactants facilitated the production of nanostructures with various sizes and shapes including nanowires, flower-like structures and spherical particles. The composition of the as-prepared nanomaterials ranged between Pt-rich and stoichiometric CoPt alloy, mainly depending on the starting ratio of the precursors. Three-dimensional structures such as the ‘flower-like’ ones showed a net ferromagnetic behavior, even at room temperature. In certain cases, the alloy nanostructures were annealed in order to obtain the ‘hard’ fct-CoPt phase, which displayed high coercivity values.  相似文献   

5.
In this paper, we reported the possibility to image non-conducting P(VDF-TrFE) copolymer films by STM. The films had the thickness of ∼25.0 nm and were spin-coated onto Au or graphite substrates. For films deposited on Au substrates, STM images showed grain structures of ∼100 nm, much larger than the grains of bare Au substrate. With increased scan rate, the film surface was damaged by STM tip and extreme protrusions and holes were observed. For films deposited on graphite substrates, we only obtained an image of very flat plane and could not observe the topography of the film surface. It seemed that the tip had pierced through the uppermost P(VDF-TrFE) layers and only imaged the layers nearest to the substrate. Asymmetrical current-voltage curves were observed from copolymer films deposited on HOPG. Experimental results were discussed.  相似文献   

6.
The room temperature growth of gallium atoms on the highly oriented pyrolytic graphite (HOPG) surface has been performed. The gallium atoms were deposited by thermal evaporation method in an ultra high vacuum system at a base pressure 5 × 10−10 torr. The X-ray photo electron spectroscopy (XPS) studies had been performed to confirm the presence of gallium atoms on HOPG surface. Scanning tunneling spectroscopy (STM) technique was employed to study the surface morphology of the clean HOPG surface and gallium covered HOPG surfaces which recognize the formation of gallium induced nanostructures. The deconvoluted XPS core level spectra of C (1s) and Ga (3d) demonstrate the possible interaction between substrate and the adsorbate atoms. The STM analysis revealed that the gallium deposition on HOPG led to significant change in the surface morphology. It was observed that the Ga atoms adsorbed as layer structure on HOPG surface for low coverage while quasi one-dimensional chain like nanostructure (1 ± 0.2 nm) has been formed for higher Ga coverage. The nanostructured surfaces induced by Ga deposition are found to be stable and could be used as a template for the growth of metallic nanostructures.  相似文献   

7.
Beside longitudinal growth along the length, we show that ZnO nanorods also exhibit transverse growth, which is responsible for the formation of interpenetrative nanorods. The longitudinal growth is lead by the catalytically active Zn-terminated (0001) surface, while the oxygen-terminated surface is catalytically inactive, resulting in the formation of ‘pencil’ or ‘bullet’ shaped nanostructures.  相似文献   

8.
Supramolecular self-assembly on surfaces offers attractive features, which are usually tuned through the choice of the chain-length-varying molecular building blocks and stabilized by hydrogen bonding. Here the linear nanopatterns of bi-component building blocks between 1,18-octadecanedionic acid (HOOC(CH2)18COOH) and 4,4′-bipyridine (BPy), 1-hydroxyhexadecanoic acid (HO(CH2)15COOH) and BPy on highly ordered pyrolytic graphite are presented. By merely changing terminal groups, we reveal by using scanning tunneling microscopy (STM) that it is rational to steer the periodicity of the linearly patterned nanostructures with nanometer precision over an extended length scale. Different surface nanopatterns on graphite surface are created by tuning different disubstituted terminal groups and the ratio of them to their complementary recognizing molecules. The STM observations are supported by the reference nanostructure of bi-component 1,16-hexadecandiol (HO(CH2)16OH) and BPy.  相似文献   

9.
Branching structures in nanometer level are of great importance in developing nanoscale science and functional electrical devices. In this letter, multidimensional magnesium oxide structures with cone-shaped branching have been mass-produced using a simple chemical vapor deposition method. The dominant structures in the product include two-dimensional ‘+’, ‘T’, or ‘Γ’ assemblies, and three-dimensional complex configurations. The results presented here enrich the nanoscale community with new basic materials for the fabrication of functional electrical and chemical sensing devices.  相似文献   

10.
Scanning tunneling microscopy (STM) and high resolution cross-sectional transmission electron microscopy (XTEM) studies have been used to investigate the formation of Ge nanocrystals grown on Si(1 0 0)-(2 × 1) surfaces by molecular beam epitaxy (MBE). We observe relatively high density of Ge islands where small ‘pyramids’, small ‘domes’ and facetted ‘domes’ of various sizes co-exist in the film. As revealed from XTEM images, a large fraction of islands, especially dome-shaped Ge islands have been found to have an aspect ratio of ∼1 (diameter):1 (height). Observation of truncated-sphere-shaped Ge islands with a narrow neck contact with the wetting layer is reported.  相似文献   

11.
Two new Au-induced reconstructed phases on the GaN(0001) surface have been identified and investigated by STM/STS method. Ringlike and c(2×12) surface nanostructures were observed on STM images. The commensurate c(2×12) structure (α-phase), according to our spectroscopic measurements, demonstrates properties of a 1D system, whereas the incommensurate β-phase looks similar to a disordered 2D system.  相似文献   

12.
Scanning tunneling microscopy (STM) was used to look for unusual self-structures on highly oriented pyrolitic graphite (HOPG) that can mimic fullerenes assemblies. HOPG features that may be taken as C60 molecular structures were found on this surface. The HOPG self-structures have been presented earlier as anomalies of the bare HOPG surface in the literature. The experimental results are in agreement with earlier STM reports on bare and modified HOPG.  相似文献   

13.
The 2D monolayer structures of two coumarin derivatives, 4-heptadecyl-7-hydroxycoumarin (HHC) 1 and 3-(2-benzo thiazolyl)-7-octadecyloxy-coumarin (BOC) 2, have been studied by STM and different sensitivity to thermal annealing for these two systems has been observed. The results show that the arrangements of these two molecules are obviously different in the self-assembled monolayer at 20 °C on the graphite surface. Furthermore, only BOC is sensitive to thermal annealing. The assembly of BOC becomes more stable and ordered after annealing at 65 °C for 1 h.  相似文献   

14.
Two-dimensional ‘hat-scratch’ structures are fabricated on silica glass by the interference of three non-coplanar beams originating from a single femtosecond laser pulse. The scanning electron microscope (SEM) characterizations show that the as-formed structures are composed of hat holes and scratch marks. The experimental results indicate that the structures are dependent on the intensity of laser beam. The formation of the two-dimensional ‘hat-scratch’ structures is mainly due to the combined laser ablation effects including ionization, shock wave, plasma expansion, and phase explosion.  相似文献   

15.
We present a brief overview of surface structures of high-index GaAs surfaces, putting emphasis on recent progress in our own laboratory. By adapting a commercial scanning tunneling microscope (STM) to our molecular beam epitaxy and ultra high vacuum analysis chamber system, we have been able to atomically resolve the GaAs( )B (8 ×1), (114)Aα2(2×1), (137), (3 7 15), and (2 5 11) surface structures. In cooperation with P. Kratzer and M. Scheffler from the Theory Department of the Fritz-Haber Institute we determined the structure of some of these surfaces by comparing total-energy calculations and STM image simulations with the atomically resolved STM images. We present the results for the {112}, {113}, and {114} surfaces. Then we describe what led us to proceed into the inner parts of the stereographic triangle and to discover the hitherto unknown stable GaAs (2 5 11) surface. Received: 16 May 2001 / Accepted: 23 July 2001 / Published online: 3 April 2002  相似文献   

16.
Self-assembled monolayers of hexadecyl palmitate (HP) and 3,3′-thiodipropionic acid di-n-octadecyl ester (TADE) physisorbed on highly oriented pyrolytic graphite (HOPG) are investigated using scanning tunneling microscope (STM) and computer simulation. Both molecules form alkane-like linear shapes to maximize the interactions with substrate when they adsorb on HOPG surface. The HP molecules self-assemble into lamellae with the chain-trough angle of 48°, which is the result of a shifting 3/2 units from the adjacent molecule in a lamella. Based on the simulation insights combined with STM images, we confirm that a perpendicular orientation appears in which the HP molecular backbone is rotated 90° with respect to the substrate such that the carbonyl points away from the HOPG surface. TADE molecules form three kinds of configurations with chain-trough angles of 90°, 72° and 60° by shifting 0, 1/2 and 1 units from their adjacent molecules, respectively. The bright stripes in STM images reveal the electron density distribution of the part between two ester groups. The energy differences of three TADE adsorption configurations by molecular mechanics (MM) simulation are used to explain the structural coexistence phenomenon. It is also shown that lattice match between alkyl chain of molecules and HOPG substrate could change molecular conformation upon self-assembly.  相似文献   

17.
Double-layered manganite La2−2xCa1+2xMn2O7 have been synthesized for compositions ‘x’=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 by solid state reaction method. From X-ray diffraction study, their crystal structures were found to be tetragonal perovskite with lattice parameters decreasing with increasing ‘x’. The decreasing lattice parameters affect the balance between in-plane, intra-bilayer and inter-bilayer exchange interactions, which is reflected on magnetotransport properties. The metal-to-insulator transition temperature is found to vary with composition and peaked around ‘x’=0.3. From ac-susceptibility study, 2D-ferromagnetic ordering was observed at higher temperatures for all compositions whereas 3D-ferromagnetic ordering was observed at quite low temperatures. In low-temperature region, decreasing susceptibility shows antiferromagnetic state for all compositions. On the basis of electrical and magnetic properties, a magnetic phase diagram is given.  相似文献   

18.
The formation mechanism of the 7×7 reconstruction on annealed Si(1 1 1) surfaces has been demonstrated at the atomic level. In situ observations of unreconstructed regions (‘1×1’) on terraces after rapid quenching to 380 °C were done using scanning tunneling microscopy (STM) with a scanning speed of 1.7 s per frame. In the narrow ‘1×1’ regions, we imaged isolated single-faulted (F) halves of the dimer-adatom-stacking-fault (DAS) structure from “birth” to “death”. During “life”, the isolated single F-halves frequently changed their size. The size changes between odd-sized F-halves always took place through even-sized F-halves of intermediate sizes: 5×5-F↔6×6-F↔7×7-F↔8×8-F↔9×9-F↔10×10-F↔11×11-F↔12×12-F↔13×13-F, where the 5×5-F, 7×7-F and so forth are irregular-type structures of the odd-sized F-halves. Even-sized F-halves and the irregular-type structures are necessary in the size changes, whereas the regular-type structures have never been involved. Lifetimes of the 10×10-F, 8×8-F, and 6×6-F at 380 °C are about 10.5, 6, and 2-3 s, respectively, which are much shorter than those of the isolated irregular-type structures of the odd-sized F-halves. With the aid of room temperature STM images of a rapidly quenched surface, we determined the atomic structures of the even-sized F-halves. We have proposed a sequential size change (SSC) model, including undiscovered parts of the size changes ‘1×1’ ↔2×2-F↔3×3-F↔4×4-F↔5×5-F, as the formation and decay mechanism of isolated single F-halves in the ‘1×1’ region. The SSC model has the following sequence: ‘1×1’ ↔ 2×2-F↔3×3-F↔4×4-F↔5×5-F↔6×6-F↔7×7-F↔8×8-F↔9×9-F↔10×10-F↔11×11-F↔12×12-F↔13×13-F. It was found by collecting statistics of size-change directions that one of two equivalent sides of the irregular-type structures, which have a mirror symmetry, is involved in the size changes thus indicating that other parts of the F-halves remain unchanged. Based on such findings, we have proposed the atomic processes for bond-rearrangements in the SSC model. The bond-rearrangements proceed along one side of a triangular F-half by breaking the existing dimers and forming new dimers like a “zipper”. Proposed atomic processes of the zipper-like restructuring are illustrated by a ball-and-stick model. The reason for the appearance of the even-sized F-halves and the irregular-type structures of the odd-sized ones is discussed in terms of the energy barrier heights along a reaction path in the size change of single F-halves.  相似文献   

19.
The adsorption and reactions of ethylene adsorbed in UHV on Pt(111) have been studied as a function of temperature by STM. The STM images taken at 160K show an ordered structure of adsorbed ethylene. Annealing to 300 K produces ethylidyne (C-CH3) irreversibly, as has been demonstrated by a wide variety of surface science techniques. The ethylidyne on Pt(111) is not visible to the STM at room temperature. Cooling the sample allows direct observation of the ethylidyne ordered structure by STM. Annealing above 430 K results in further dehydrogenation, eventually leaving only carbon on the surface. The decomposition products appear as small clusters which are localized and uniformly distributed over the surface. Further annealing to temperatures >800 K results in the growth of graphite islands on the Pt(111) surface. The annealed graphite islands exhibit several supersturctures with lattice parameters of up to 22 Å, which are thought to result from the higher order commensurability with the Pt(111) substrate at different relative rotations.  相似文献   

20.
It was found that STM (scanning tunneling microscopy) images of defects in highly oriented pyrolytic graphite introduced by bombardment of 400 eV Ar+ ions in ultra-high vacuum exhibit substantial changes in the course of STM probing. Detailed examination of abrupt changes in the tunneling current measured at defect sites during voltage scans shows that the primary cause of the defect-image change was found to be neither the injected current nor the injected power but the absolute value of the voltage applied between the probe tip and the sample. We propose that an electric polarization induced force attracting the sample surface toward the probe tip widens the layer spacing of the graphite surface, leading to an acceleration of the lateral diffusion of interstitial atoms introduced by the ion irradiation, which results in a change in the defect structures and the accompanying electronic structures sensible in the STMimaging. Received: 14 June 2001 / Accepted: 7 September 2001 / Published online: 20 December 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号