首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zr-N diffusion barriers were deposited on the Si substrates by rf reactive magnetron sputtering under various substrate bias voltages. Cu films were subsequently sputtered onto the Zr-N films by dc pulse magnetron sputtering without breaking vacuum. The Cu/Zr-N/Si specimens were then annealed up to 650 °C in N2 ambient for an hour. The effects of deposition bias on growth rate, film resistivity, microstructure, and diffusion barrier properties of Zr-N films were investigated. An increase in negative substrate bias resulted in a decrease in deposition rate together with a decrease in resistivity. It was found that the sheet resistances of Cu/Zr-N(−200 V)/Si contact system were lower than those of Cu/Zr-N(−50 V)/Si specimens after annealing at 650 °C. Cu/Zr-N(−200 V)/Si contact systems showed better thermal stability so that the Cu3Si phase could not be detected.  相似文献   

2.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

3.
There are higher technical requirements for protecting layer of magnetic heads and disks used in future high-density storage fields. In this paper, ultra-thin (2 nm thickness) tetrahedral amorphous carbon (ta-C) films were firstly prepared by filtered cathodic vacuum arc (FCVA) method, then a series of nitriding treatments were performed with nitrogen plasma generated using electron cyclotron resonance (ECR) microwave source. Here it highlighted the influence of nitrogen flow and applied substrate bias voltage on the structural characteristics of ta-C films during the plasma nitriding process. The chemical compositions, element depth distribution profiles, physical structures and bonding configurations of plasma-nitrided ta-C films were investigated by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and UV-vis Raman spectroscopy. The experimental results show that the carbon nitride compounds (CNx) are formed in nitrogenated ta-C films in which the N content and its depth distribution depends on bias voltage to large extent rather than N2 flow. The N content of nitrogenated ta-C films can reach 16 at.% for a substrate bias of −300 V and a N2 flow of 90 sccm. With increasing nitrogen content, there is less G peak dispersion and more ordering of structure. Furthermore, appropriate nitriding treatment (substrate bias: −100 V, N2 flow: 150 sccm) can greatly increase the fraction of sp3 and sp3C-N bonds, but the values begin to fall when the N content is above 9.8 at.%. All these indicate that suitable ECR-assisted microwave plasma nitriding is a potential modification method to obtain ultra-thin ta-C films with higher sp3 and sp3C-N fractions for high-density magnetic storage applications.  相似文献   

4.
The Zn1−xMgxO thin films were grown on Al2O3 substrate with various O2 flow rates by plasma-assisted molecular beam epitaxy (P-MBE). The growth conditions were optimized by the characterizations of morphology, structural and optical properties. The Mg content of the Zn1−xMgxO thin film increases monotonously with decreasing the oxygen flux. X-ray diffractometer (XRD) measurements show that all the thin films are preferred (0 0 2) orientated. By transmittance and absorption measurements, it was found that the band gap of the film decreases gradually with increasing oxygen flow rate. The surface morphology dependent on the oxygen flow rate was also studied by field emission scanning electron microscopy (FE-SEM). The surface roughness became significant with increasing oxygen flow rate, and the nanostructures were formed at the larger flow rate. The relationship between the morphology and the oxygen flow rate of Zn1−xMgxO films was discussed.  相似文献   

5.
Ge1−xCx films deposited by using a medium frequency magnetron sputtering technique (MFMST) were analyzed with X-ray photoelectron and Raman spectroscopy. The deposited Ge1−xCx films consist of C, Ge, GeC and GeOy. The GeC content in the Ge1−xCx films linearly decreases, and the C content linearly increases with increasing deposition temperature from 150 to 350 °C. The GeC content decreases from 11.6% at a substrate bias of 250 V to a lowest value of 9.6% at 350 V, then increases again to 10.4% at 450 V. While the C content increases from 49.0% at the bias of 250 V to a largest value of 58.0% at 350 V and then maintains this level at 450 V. It is found that selecting a bias parameter seems more effective than deposition temperature if we want to obtain a higher content of GeC in the deposited films. In addition, a new method is presented in this paper to estimate the changes of GeC content in the Ge1−xCx films by observing the shifts of Ge-Ge LO phonon peak in Raman spectra for the Ge1−xCx films. The related mechanism is also discussed in this paper.  相似文献   

6.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

7.
Hafnium oxynitride (HfOxNy) gate dielectric has been deposited on Si (1 0 0) by means of radio frequency (rf) reactive sputtering using directly a HfO2 target in N2/Ar ambient. The thermal stability and microstructural characteristics for the HfOxNy films have been investigated. XPS results confirmed that nitrogen was successfully incorporated into the HfO2 films. XRD analyses showed that the HfOxNy films remain amorphous after 800 °C annealing in N2 ambient. Meanwhile the HfOxNy films can also effectively suppress oxygen diffusion during high temperature annealing and prevent interface layer from forming between HfOxNy films and Si substrates. AFM measurements demonstrated that surface roughness of the HfOxNy films increase slightly as compared to those pure HfO2 films after post deposition annealing. By virtue of building reasonable model structure, the optical properties of the HfOxNy films have been discussed in detail.  相似文献   

8.
Theoretical investigations of the conduction band offset (CBO) and valence band offset (VBO) of the relaxed and pseudo-morphically strained GaAs1−xNx/GaAs1−yNy heterointerfaces at various nitrogen concentrations (x and y) within the range 0-0.05 and along the [0 0 1] direction are performed by means of the model-solid theory combined with the empirical pseudopotential method under the virtual crystal approximation that takes into account the effects of the compositional disorder. It has been found that for y < x, the CBO and VBO have negative and positive signs, respectively, whereas the reverse is seen when y > x. The band gap of the GaAs1−xNx over layer falls completely inside the band gap of the substrate GaAs1−yNy and thus the alignment is of type I (straddling) for y < x. When y > x, the alignment remains of type I but in this case it is the band gap of the substrate GaAs1−yNy which is fully inside the band gap of the GaAs1−xNx over layer. Besides the CBO, the VBO and the relaxed/strained band gap of two particular cases: GaAs1−xNx/GaAs and GaAs1−xNx/GaAs0.98N0.02 heterointerfaces have been determined.  相似文献   

9.
Solution Growth Technique (SGT) has been used for deposition of Zn1−xCdS nanocrystalline thin films. Various parameters such as solution pH (10.4), deposition time, concentration of ions, composition and deposition and annealing temperatures have been optimized for the development of device grade thin film. In order to achieve uniformity and adhesiveness of thin film on glass substrate, 5 ml triethanolamine (TEA) have been added in deposition solution. The as-deposited films have been annealed in Rapid Thermal Annealing (RTA) system at various temperature ranges from 100 to 500 °C in air. The changes in structural formation and optical transport phenomena have been studied with annealing temperatures and composition value (x). As-deposited films have two phases of ZnS and CdS, which were confirmed by X-ray diffraction studies; further the X-ray analysis of annealed (380 °C) films indicates that the films have nanocrystalline size (150 nm) and crystal structure depends on the films stoichiometry and annealing temperatures. The Zn0.4CdS films annealed at 380 °C in air for 5 min have hexagonal structure where as films annealed at 500 °C have represented the oxide phase with hexagonal structure. Optical properties of the films were studied in the wavelength range 350-1000 nm. The optical band gap (Eg=2.94-2.30 eV) decreases with the composition (x) value. The effect of air rapid annealing on the photoresponse has also been observed on Zn1−xCdS nanocrystal thin films. The Zn1−xCdS thin film has higher photosensitivity at higher annealing temperatures (380-500 °C), and films also have mixed Zn1−xCdS/Zn1−xCdSO phase with larger grain size than the as-deposited and films annealed up to 380 °C. The present results are well agreed with the results of other studies.  相似文献   

10.
Y.D. Su 《Applied Surface Science》2009,255(18):8164-8170
We deposit ternary WCxNy thin films on Si (1 0 0) substrates at 500 °C using direct current (DC) reactive magnetron sputtering in a mixture of CH4/N2/Ar discharge, and explore the effects of substrate bias (Vb) on the intrinsic stress, preferred orientation and phase transition for the obtained films by virtue of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and selective area electron diffraction (SAED). We find that with increasing the absolute value of Vb up to 200 V the carbon (x) and nitrogen (y) atom concentrations of WCxNy films keep almost constant with the values of 0.75 and 0.25, respectively. The XPS and SAED results, combined with the density-functional theory (DFT) calculations on the electronic structure of WC0.75N0.25, show our obtained WCxNy films are single-phase of carbonitrides. Furthermore, we find that the compressive stress sharply increases with increasing the absolute value of Vb, which leads to a pronounced change in the preferred orientation and phase structure for the film, in which a phase transition from cubic β-WCxNy to hexagonal α-WCxNy occurs as Vb is in the range of −40 to −120 V. In order to reveal the relationship between the stress and phase transition as well as preferred orientation, the DFT calculations are used to obtain the elastic constants for β-WCxNy and α-WCxNy. The calculated results show that the preferred orientation is dependent on the competition between strain energy and surface energy, and the phase transition can be attributed to a decrease in the strain energy.  相似文献   

11.
To prevent Co diffusion from cemented carbides at high temperatures, we fabricated TaNx coatings by reactive direct current (d.c.) magnetron sputtering onto 6 wt.% cobalt cemented carbide substrates, to form diffusion barrier layers. Varying the nitrogen flow ratio, N2/(Ar + N2), from 0.05 to 0.4 during the sputtering process had a significant effect on coating structure and content. Deposition rate reduced as the nitrogen flow ratio increased. The effects of nitrogen flow ratio on the crystalline characteristics of the TaNx coatings were examined by X-ray diffraction. The TaNx coatings annealing conditions were 500, 600, 700, and 800 °C for 4 h in air. We evaluated the performance of the diffusion barrier using both Auger electron spectroscopy depth-profiles and X-ray diffraction techniques. We also investigated oxidation resistance of the TaNx coatings annealed in air, and under a 50 ppm O2-N2 atmosphere, to evaluate the fabricated layers effectiveness as a protective coating for glass molding dies.  相似文献   

12.
The effects of thermal annealing in vacuum on the bonding structures, optical and mechanical properties for germanium carbide (Ge1−xCx) thin films, deposited by radio frequency (RF) reactive sputtering of pure Ge(1 1 1) target in a CH4/Ar mixture discharge, are investigated. We find that there are no significant changes in the bonding structure of the films annealed below 300 °C. The fraction of Ge-H bonds for the film annealed at temperatures (Ta) above 300 °C decreases, whereas that of C-H bonds show a decrease only when Ta exceeds 400 °C. The out-diffusion of hydrogen promotes the formation of Ge-C bonds at Ta above 400 °C and thus leads to a substantial increase in the compressive stress and hardness for the film. The refractive indices and optical gaps for Ge1−xCx films are almost constant against Ta, which can be ascribed to the unchanged ratios of Ge/C and sp2-C/sp3-C concentrations. Furthermore, we also find that the excellent optical transmission for an antireflection Ge1−xCx double-layer film on ZnS substrate is still maintained after annealing at 700 °C.  相似文献   

13.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

14.
Multilayered Ge nanocrystals embedded in SiOxGeNy films have been fabricated on Si substrate by a (Ge + SiO2)/SiOxGeNy superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO2 composite target and subsequent thermal annealing in N2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the ‘Z’ growth direction.  相似文献   

15.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

16.
Deposited with different oxygen partial pressures and substrate temperatures, MgxZn1−xO thin films were prepared using a Mg0.6Zn0.4O ceramic target by magnetron sputtering. The structural and optical properties of the prepared thin films were investigated. The X-ray diffraction spectra reveal that all the films on quartz substrate are grown along (2 0 0) orientation with cubic structure. The lattice constant decreases and the crystallite size increases with the increase of substrate temperature. Both energy dispersive X-ray spectroscopy and calculated results suggest the ratio of Mg/Zn increases with increasing substrate temperature. The thin film deposited with Ts = 500 °C has a minimal rms roughness of 7.37 nm. The transmittance of all the films is higher than 85% in the visual region. The optical band gap is not sensitive to the oxygen partial pressure, while it increases from 5.63 eV for Ts = 100 °C to 5.95 eV for Ts = 700 °C. In addition, the refractive indices calculated from transmission spectra are sensitive to the substrate temperature. The photoluminescence spectra of MgxZn1−xO thin films excited by 330 nm ultraviolet light indicate that the peak intensity of the spectra is influenced by the oxygen partial pressure and substrate temperature.  相似文献   

17.
Polycrystalline Co2Mn1−xSi (CMS) thin films with Mn-deficiency can grow on different types of substrates such as MgO (1 0 0) single crystal, α-sapphire (0 0 0 1) and Si coated with SiO2 either by using V or Ta/Cu as the seed layer. The magnetic property, especially the coercivity of the CMS thin films strongly depends on the crystalline structure and microstructure of the CMS thin film, hence it is affected by the substrate and also the seed layer. Very soft CMS thin film with coercivity of about 20 Oe has been obtained when MgO (1 0 0) is used as the substrate. Magnetic tunnel junctions (with MR ratio of about 9%–18%) by utilizing the CMS as one of ferromagnetic electrodes have been successfully fabricated. The degradation of the magnetoresistive effect of the MTJ after magnetic annealing is attributed to the diffusion of the Mn-atoms into the tunnel barrier during the annealing process.  相似文献   

18.
Mixed thin films of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x (x=0.25) were prepared on glass substrates by spray pyrolysis technique for various substrate temperatures 300, 320 and 340 °C. Structural and optical properties were studied. XRD studies reveal the formation of mixed films. The substrate temperature of 340 °C seems to be critical for the formation of CdO-PbO mixed films. It is observed that (CdS)1−x(PbS)x mixed films were formed at all the three substrate temperatures. The direct band gap value of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x mixed films is about 2.6 and 2.37 eV, respectively.  相似文献   

19.
Cr1−xAlxC films were deposited on high-speed steel by RF reactive magnetron sputtering. In this study, we aimed to identify the effect of the Al content on the properties of Cr1−xAlxC films. We found that Cr1−xAlxC films exhibited a fine columnar grain microstructure with some special characteristics, such as high hardness of Hv 1426, a low friction coefficient of 0.29, and a large contact angle of 90° for x = 0.18. Furthermore, an increase in Al content resulted in a decrease in film hardness and an increase in contact angle. Moreover, on annealing at 923 K, the mechanical properties of the films improved and a dense protective film of complex Cr2O3 and Al2O3 oxides was formed on the surface for better wear resistance, which will ultimately increase the lifetime of the high-speed steel substrate.  相似文献   

20.
Nitrogen-doped titanium oxide (TiOxNy) films were prepared with ion-assisted electron-beam evaporation. The nitrogen (N) incorporated in the film is influenced by the N2 flux modulated by the N2 flow rate through an ion gun. The TiOxNy films have the absorption edge of TiO2 red-shifted to 500 nm and exhibit visible light-induced photocatalytic properties in the surface hydrophilicity and the degradation of methylene blue. The structures and states of nitrogen in the films are investigated by X-ray diffraction patterns (XRD), and X-ray photoelectron spectroscopy (XPS) and related to their visible light-induced photocatalytic properties. The results indicate that the substitutional N in anatase TiO2 can induce visible light photocatalysis. The substitutional N is readily doped by the energetic nitrogen ions from the ion gun. The best photocatalytic activity is obtained at the largest N loading about 5.6 at.%, corresponding to the most substitutional N in anatase TiO2. The film exhibits the degradation of methylene blue with a rate-constant (k) about 0.065 h−1 and retaining 7° water contact angle on the surface under visible light illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号