首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polycrystalline Au was bombarded with 15 keV Ar+, and the resulting secondary neutral cluster yield distribution was measured by laser postionisation mass spectrometry. Neutral Aun clusters containing up to 20 atoms were observed. The yield of Aun clusters, Yn, was found to follow a power in n, Yn ∝ n−3.4, but the yield of individual clusters depended on whether n was even or odd. This odd-even yield variation was caused by fragmentation of the cluster photoions. Simulation of photoion trajectories within the TOF spectrometer shows that the fragmentation dominantly occurs before the photoions enter the reflectron part of the spectrometer.  相似文献   

2.
Low-energy cluster beam deposition was used to deposit mass-selected Aun clusters (n = 4, 6, 13 and 20) on amorphous carbon (a-C) substrates. The resulting samples were stored at room temperature under ambient conditions for time periods up to 32 months to analyze the coarsening behaviour of the clusters. Cluster-size distributions were measured in regular time intervals by transmission electron microscopy (TEM). The TEM experiments show a significant increase of the average cluster size with time analogous to classical surface Ostwald ripening (OR). The coarsening of Au clusters can be well described by steady-state diffusion-limited kinetics. The derived surface mass-transport diffusion coefficients at room temperature range between 1.1 and 3.8·10−25 m2 s−1 for our samples. A detailed analysis of values suggests that, the rate of the surface OR for mass-selected Aun clusters increases with the cluster size in the sequence: Au4 ≈ Au6 < Au13 < Au20 for the investigated range of Au clusters. Given that the initial, on-surface cluster-size distributions are nominally monodisperse, classical OR with cluster coarsening based only on the Gibbs-Thomson effect cannot explain the observed coarsening. The activation of the coarsening process is rationalized by initial variations of the cluster sizes due to the deposition process itself and/or the interaction of the clusters with the substrate. Moreover, the presence of initial deposited Au clusters as different isomers with slightly different chemical potential on the substrate, may also initiate the coarsening by surface OR. Furthermore, we find that the coarsening is most pronounced for the paucidispersed sample with Aum (10 ? m ? 20) clusters. A possible explanation of this behaviour is the presence of an initial distribution of different cluster sizes directly after deposition.  相似文献   

3.
A NiAl(1 1 1) single crystal was bombarded with 15 keV Ar+, and the resulting secondary neutrals were analysed by laser postionisation secondary neutral mass spectrometry. By measuring the individual cluster photoion intensity as a function of laser power, the sputter yields of 33 individual clusters were determined. The yield of Aln clusters sputtered from NiAl falls with increasing cluster nuclearity as n−8.7 while Nin and AlmnNin yields are proportional to n−5.9 and n−5.2, respectively. The distribution of thee yields of mixed AlmnNin clusters with n and m is found to diverge significantly from the expected distribution based on a random combinatorial approach, indicating that the energetics due to the chemical bonding in the clusters plays a significant role during cluster formation in the sputtering process.  相似文献   

4.
In order to investigate the secondary cluster ion emission process of organo-metallic compounds under keV ion bombardment, self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems. In this experimental study, we focussed on the influence of the primary ion species on the emission processes of gold-alkanethiolate cluster ions from a hexadecanethiol SAM on gold. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements using the following primary ion species and acceleration voltages: Ar+, Xe+, SF5+ (10 kV), Bi+, Bi3+(25 kV), Bi32+, Bi52+, Bi72+ (25 kV).It is well known that molecular ions M and gold-alkanethiolate cluster ions AuxMy with M = S-(CH2)15-CH3, x − 3 ≤ y ≤ x + 1, x, y > 0, show intense peaks in negative mass spectra. We derived yields YSI exemplarily for the molecular ions M and the gold-hexadecanethiolate cluster ions Auy+1My up to y = 8 and found an exponentially decreasing behaviour for increasing y-values for the cluster ions.In contrast to the well-known increase in secondary ion yield for molecular secondary ions when moving from lighter to heavier (e.g. Ar+ to Xe+) or from monoatomic to polyatomic (e.g. Xe+ to SF5+) primary ions, we find a distinctly different behaviour for the secondary cluster ions. For polyatomic primary ions, there is a decrease in secondary ion yield for the gold-hexadecanethiolate clusters whereas the relative decrease of the secondary ion yield ξY with increasing y remains almost constant for all investigated primary ions.  相似文献   

5.
Bimetallic silver-gold clusters are well suited to study changes in metallic versus ionic properties involving charge transfer as a function of the size and the composition. We present structures, ionization potentials (IP) and vertical detachment energies (VDE) for neutral and charged bimetallic AunAgm ( 2(n + m)5) clusters obtained from density functional level of theory. In the stable structures of these clusters Au atoms assume positions which favor charge transfer from Ag atoms. In clusters with equal numbers of hetero atoms (n = m = 1- 4) heteronuclear bonding is preferred to homonuclear bonding, giving rise to large values of ionization potentials. For larger clusters (n=m=5, 10) stable structures do not favor neither hetero bonding nor segregation into the single components, although they exhibit more metallic than ionic features. This remains valid also for Au8Ag12 cluster characterized by strong charge transfer to gold subunit. The influence of doping of pure gold clusters with silver atoms on VDE and IP values is discussed in context of their reactivity towards O2 and CO molecules. As a starting point we consider reactivity towards CO and O2 molecules on the example of AgAu- dimer. The results show that the catalytic cycle can be fullfilled.  相似文献   

6.
We investigated the influence of the projectile size and energy using Aunq+ clusters (5 < n < 400, 1 < q < 4) impacting on a glycine target with a 19q-34q keV energy range. We show that both CN fragment and Gly molecular ion yields are equivalent for projectiles with n > 9 and increase with the energy per projectile atoms. A maximum yield of 0.5 (50%) for both CN and Gly was obtained with the Au4004+ projectile at 136 keV total energy. For Gly, the yield enhancement is linear for Aun when n > 5. Trends for the CN fragment are different. A nonlinear yield enhancement proportional to n3 is observed for Aun when n < 9.  相似文献   

7.
An all-electron scalar relativistic calculation on AunH2S (n = 1-13) clusters has been performed by using density functional theory with the generalized gradient approximation at PW91 level. The small gold cluster would like to bond with sulfur in the same plane and the H2S molecule prefers to occupy the on-top and single fold coordination site in the cluster. The Aun structures and H2S molecule in all AunH2S clusters are only slightly perturbed and still maintain their structural integrity. After adsorption, the S-H, H-H bond-lengths and most Au-Au bond-lengths are elongated, only a few Au-Au bond-lengths far from H2S molecule are shortened. The reactivity enhancement of H2S molecule is obvious and the strong gold-sulfur bond is observed expectedly. The most favorable adsorption takes place in the case that the H2S molecule is adsorbed by an even-numbered Aun cluster and becomes AunH2S cluster with even number of valence electrons. It is believed that the strong scalar relativistic effect is favorable to H2S molecule adsorption onto small gold clusters and is also one of the important reasons for the strong gold-sulfur bond.  相似文献   

8.
The emission of neutral and charged atoms and clusters from a polycrystalline indium surface under bombardment with 5 and 10 keV Au, Au2, Au3 and Au5 projectiles was investigated. Single photon laser postionization was utilized for the detection of sputtered neutral particles. Secondary ions were detected without the laser under otherwise exactly the same experimental conditions. The relative cluster yields were found to be enhanced under polyatomic projectile bombardment, more so the larger the number of atoms in the sputtered cluster. The ionization probability strongly increases with increasing cluster size, but is essentially independent of the projectile impact energy. At a fixed impact energy, the ionization probability of sputtered monomers was found to decrease with increasing number of constituent gold atoms per projectile, but there was no detectable effect for sputtered dimers and larger clusters.  相似文献   

9.
The structural and electronic properties of silver-doped gold clusters Au n Ag v (2?≤?n?≤?10; v?=?0,?±1) have been systematically investigated using density functional theory. The results show that the ground state optimal structures of the cationic and neutral clusters are found to be planar up to n?=?3 and 9, respectively. However, for the anionic clusters, no three-dimensional lowest-energy structures are obtained according to DFT calculations. The calculated binding energy and dissociation energy as a function of cluster size exhibit odd–even alternations. The natural population analysis indicates that in Au n Ag v clusters charges transfer from the Ag atom to the Au frames. The trends for the vertical detachment energies, adiabatic electron affinities, adiabatic ionization potentials, and chemical hardness of Au n Ag v clusters, as the cluster size increases, are studied in detail and compared with the available experimental data.  相似文献   

10.
In the work the focus is on the preparation of self-assembled monolayer-like films consisting of thiolated cyclodextrin on gold substrate and a characterization by using secondary ion mass spectrometry. The short (1 min) and long (1 h) time preparations of self-assembled monolayer-like films, resulting in submonolayer and monolayer regimes, are investigated, respectively. The observed species of thiolated cyclodextrin (M as molecular ion) self-assembled monolayer-like films are assigned to three groups: AuxHySz clusters, fragments with origin in cyclodextrin molecule associated with Au, and molecular ions. The group of AuxHySz (x = 2-17, y = 0-2, z = 1-5) clusters have higher intensities than other species in the positive and even more in negative mass spectra. Interestingly, the dependence between the number of Au and S atoms shows that with the increasing size of AuxHySz clusters up to 11 Au atoms, the number of associated S atoms is also increasing and then decreasing. Molecular species as (M−S+H)Na+, (M+H)Na+, AuMNa+, (M2−S)Na+, and M2Na+ are determined, and also in cationized forms with K+. The intensities of thiolated cyclodextrin fragments at the long time preparation are approximately 10 times higher than the intensities of the same fragments observed at the short time. The largest observed ions in thiolated cyclodextrin self-assembled monolayer-like films are AuM2 and Au2M. The thiolated cyclodextrin molecular ions are compared with hexadecanethiol molecular ions in the form of AuxMw where the values of x and w are smaller for thiolated cyclodextrin than for hexadecanethiol. This result is supported with larger, more compact, and more stabile thiolated cyclodextrin molecule.  相似文献   

11.
The reactions of free, size selected Au n + (n = 1–3, 5, 7) and Ag3 + clusters with CH3Br as well as the photodissociation of the resulting complexes at 266 nm were studied in a radio frequency ion trap under multiple collision conditions. CH3Br was found to interact more strongly with the gold clusters than with the silver clusters. All investigated metal clusters exhibited characteristic size dependent adsorbate coverages. Furthermore, the successive loss of methyl radicals was identified as a major thermal reaction channel of the adsorbed CH3Br molecules. Photodissociation experiments were performed with the product complexes of the trimer clusters and revealed the strongly preferred light-induced fragmentation of Au3Br3 + and Ag3Br3 +, respectively, over any other thermal reaction products. However, whereas in the case of the gold cluster complexes the bare Au3 + was exclusively re-formed through laser irradiation, considerable photoinduced metal cluster fragmentation occurred in the case of Ag3Br3 +.  相似文献   

12.
The secondary ion mass spectrum of silicon sputtered by high energy C60+ ions in sputter equilibrium is found to be dominated by Si clusters and we report the relative yields of Sim+ (1 ≤ m ≤ 15) and various SimCn+ clusters (1 ≤ m ≤ 11 for n = 1; 1 ≤ m ≤ 6 for n = 2; 1 ≤ m ≤ 4 for n = 3). The yields of Sim+ clusters up to Si7+ are significant (between 0.1 and 0.6 of the Si+ yield) with even numbered clusters Si4+ and Si6+ having the highest probability of formation. The abundances of cluster ions between Si8+ and Si11+ are still significant (>1% relative to Si+) but drop by a factor of ∼100 between Si11+ and Si13+. The probability of formation of clusters Si13+-Si15+ is approximately constant at ∼5 × 10−4 relative to Si+ and rising a little for Si15+, but clusters beyond Si15 are not detected (Sim≥16+/Si+ < 1 × 10−4). The probability of formation of Sim+ and SimCn+ clusters depends only very weakly on the C60+ primary ion energy between 13.5 keV and 37.5 keV. The behaviour of Sim+ and SimCn+ cluster ions was also investigated for impacts onto a fresh Si surface to study the effects that saturation of the surface with C60+ in reaching sputter equilibrium may have had on the measured abundances. By comparison, there are very minor amounts of pure Sim+ clusters produced during C60+ sputtering of silica (SiO2) and various silicate minerals. The abundances for clusters heavier than Si2+ are very small compared to the case where Si is the target.The data reported here suggest that Sim+ and SimCn+ cluster abundances may be consistent in a qualitative way with theoretical modelling by others which predicts each carbon atom to bind with 3-4 Si atoms in the sample. This experimental data may now be used to improve theoretical modelling.  相似文献   

13.
The Ce6−xYxMoO15−δ solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15−δ ranging from 5.9×10−5 (S cm−1) at 300 °C to 1.3×10−2 (S cm−1) at 650 °C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 °C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.  相似文献   

14.
采用相对论有效原子实势(RECP)近似和密度泛函(B3LYP)方法,选择LANL2DZ基组,优化得到了AunY(n=1—9)二元掺杂团簇稳定的基态结构和电子性质.研究结果表明,掺杂Y原子的AunY(n=1—9)团簇随n的变化,其电离势、电子亲合能和费米能级与Aun(n=2—9)一样具有“奇-偶”振荡效应;团簇离子的稳定性具有“幻数”现象,Au2Y+和Au6Y+比其他团簇离子更稳定,与质谱实验结果一致;同一团簇中,团簇最稳定的异构体(基态)是趋于Y原子有最大的邻近的Au原子数. 关键词: Au-Y团簇 密度泛函 平衡几何结构 电子性质  相似文献   

15.
Dominant aim of the paper was to verify the existence of the SimHn clusters in a-Si:H layers. Thin layers were deposited by plasma-enhanced chemical vapor deposition (PECVD) on both glass and crystalline silicon substrates. Their IR and structural properties were investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction at grazing incidence angle (XRDGI). We have found that the layer probably consists of larger structurally ordered parts corresponding to SimHn clusters and separated groups of (Si-Hx)N. The ordered parts could be identified as some of SimHn clusters ranging from (10, 16) to (84, 64) represented by corresponding vibration frequencies in three following IR regions: 600-750, 830-900 and 2080-2180 cm−1. XRDGI measurement indicates that diffraction maximum at around 2Θ = 28° can be attributed to an existing SimHn cluster.  相似文献   

16.
Electronic states of gold nanoparticles in mordenite and their transformations under redox treatments have been studied by the methods of FTIR spectroscopy of adsorbed CO and diffuse reflectance UV-visible spectroscopy. Different states of ionic and metallic gold were detected in the zeolite channels and on the external surface of the zeolite - Au+ and Au3+ ions, charged clusters , and neutral nanoparticles Aum. Catalytic tests of the samples revealed the existence of two types of active sites of gold in CO oxidation - gold clusters <2 nm (low-temperature activity) and gold nanoparticles (high temperature activity).  相似文献   

17.
Under generalized gradient approximation (GGA), geometrical structure, size dependence of stability and electronic properties of neutral Mgn, singly charged cationic Mgn+ and singly charged anionic Mgn clusters consisting of up to 11 atoms have been studied systematically by ab initio method within the norm-conserving pseudopotentials. In addition to the electronic shell effects, the “closed” geometrical structure can also enhance the stability of the clusters. The enhanced stability for the cationic cluster resulted from the removal of an antibonding electron is larger than that for the anionic cluster by promoting an extra electron to occupy a bonding orbital. The density of states (DOS) shows the increase in interaction between valence and unoccupied states leads to an increase in s-p hybridization.  相似文献   

18.
Equilibrium geometries, relative stabilities, and magnetic properties of small AunMn (n=1-8) clusters have been investigated using density functional theory at the PW91P86 level. It is found that Mn atoms in the ground state AunMn isomers tend to occupy the most highly coordinated position and the lowest energy structure of AunMn clusters with even n is similar to that of pure Aun+1 clusters, except for n=2. The substitution of Au atom in Aun+1 cluster by a Mn atom improves the stability of the host clusters. Maximum peaks are observed for AunMn clusters at n=2, 4 on the size dependence of second-order energy differences and fragmentation energies, implying that the two clusters possess relatively higher stability. The HOMO-LUMO energy gaps of the ground state AunMn clusters show a pronounced odd-even oscillation with the number of Au atoms, and the energy gap of Au2Mn cluster is the biggest among all the clusters. The magnetism calculations indicate that the total magnetic moment of AunMn cluster, which has a very large magnetic moment in comparison to the pure Aun+1 cluster, is mainly localized on Mn atom.  相似文献   

19.
A systematic study of the X2Aun (X = La, Y, Sc; n = 1–9) clusters are performed by using the density functional theory at TPSS level. The structures, stabilities, electronic, and magnetic properties are investigated in comparison with pure gold clusters. The results show that the transition points of the doped clusters from two-dimensional to three-dimensional structure are obviously earlier than gold clusters. The impurity X atoms tend to occupy the most highly coordinated position and form the largest probable number of bonds with gold atoms. In addition, the impurity atoms can strongly enhance the stabilities of gold clusters. It indicates that the impurity atoms dramatically affect the geometries and stabilities of the Aun clusters. The highest occupied molecular orbital–lowest occupied molecular orbital gap, vertical ionisation potential, and chemical hardness show that the X2Au6 clusters have higher stabilities than the others. In La2Au1–9, Y2Au1–7, and Sc2Au1–4 clusters, the charges transfer from X atoms to the Aun frames. The total magnetic moments of X2Aun clusters exist distinctly odd–even alternation behaviours except for La2Au4 and Sc2Au4 clusters.  相似文献   

20.
齐凯天  毛华平  王红艳  盛勇 《中国物理 B》2010,19(3):33602-033602
Employing first-principles methods,based on the density function theory,and using the LANL2DZ basis sets,the ground-state geometric,the stable and the electronic properties of Aun-2Y2 clusters are investigated in this paper.Meanwhile,the differences in property among pure gold clusters,pure yttrium clusters,gold clusters doped with one yttrium atom,and gold clusters doped with two yttrium atoms are studied.We find that when gold clusters are doped by two yttrium atoms,the odd-even oscillatory behaviours of Aun-1Y and Aun disappear.The properties of Aun-2Y2 clusters are close to those of pure yttrium clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号