首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon carbide (SiC) is a candidate material for electronic devices to operate upon crucial environment. Electronic states of silicides and/or carbide/graphite formed in metal/SiC contact system are fundamentally important from the viewpoint of device performance.We study interface electronic structure of iron thin film deposited on silicon (Si)- and carbon (C)-face of 4H-SiC(0 0 0 1) by using a soft X-ray emission spectroscopy (SXES). For specimens of Fe (50 nm)/4H-SiC (substrate) contact systems annealed at 700 and 900 °C, the Si L2,3 emission spectra indicate different shapes and peak energies from the substrate depending on thermal-treated temperature. The product of materials such as silicides is suggested. Further, from comparison of Si L2,3 emission spectra between Si- and C-face for the same annealing temperature at 700 °C, it is concluded that the similar silicides and/or ternary materials are formed on the two surfaces. However for those of 900 °C, the film on substrate is composed of the different silicide and/or ternary materials.  相似文献   

2.
3.
In this paper, we present an experimental study on the chemical and electrochemical etching of silicon carbide (SiC) in different HF-based solutions and its application in different fields, such as optoelectronics (photodiode) and environment (gas sensors). The thin SiC films have been grown by pulsed laser deposition method. Different oxidant reagents have been explored. It has been shown that the morphology of the surface evolves with the etching conditions (oxidant, concentration, temperature, etc.). A new chemical polishing solution of polycrystalline 6H-SiC based on HF:Na2O2 solution has been developed. Moreover, an electrochemical etching method has been carried out to form a porous SiC layer on both polycrystalline and thin SiC films. The PL results show that the porous polycrystalline 6H-SiC and porous thin SiC films exhibited an intense blue luminescence and a green-blue luminescence centred at 2.82 eV (430 nm) and 2.20 eV (560 nm), respectively. Different device structures based on both prepared samples have been investigated as photodiode and gas sensors.  相似文献   

4.
Epitaxially grown ZnO thin film on 6H-SiC(0 0 0 1) substrate was prepared by using a spin coating-pyrolysis with a zinc naphthenate precursor. As-deposited film was pyrolyzed at 500 °C for 10 min in air and finally annealed at 800 °C for 30 min in air. In-plane alignment of the film was investigated by X-ray pole-figure analysis. Field emission-scanning electron microscope, scanning probe microscope, and He-Cd laser (325 nm) was used to analyze the surface morphology, the surface roughness and photoluminescence of the films. In the photoluminescence spectra, near-band-edge emission with a broad deep-level emission was observed. The position of the near-band-edge peak was around 3.27 eV.  相似文献   

5.
In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K2S2O8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K2S2O8 solution has been proposed.  相似文献   

6.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   

7.
Silicon carbide (SiC), as it is well-known, is inaccessible to usual methods of technological processing. Consequently, it is important to search for alternative technologies of processing SiC, including laser processing, and to study the accompanying physical processes. The work deals with the investigation of pulsed laser radiation influence on the surface of 6H-SiC crystal. The calculated temperature profile of SiC under laser irradiation is shown. Structural changes in surface and near-surface layers of SiC were studied by atomic force microscopy images, photoluminescence, Raman spectra and field emission current-voltage characteristics of initial and irradiated surfaces. It is shown that the cone-shaped nanostructures with typical dimension of 100-200 nm height and 5-10 nm width at the edge are formed on SiC surface under nitrogen laser exposure (λ = 0.337 μm, tp = 7 ns, Ep = 1.5 mJ). The average values of threshold energy density 〈Wthn〉 at which formation of nanostructures starts on the 0 0 0 1 and surfaces of n-type 6H-SiC(N), nitrogen concentration nN ≅ 2 × 1018 cm−3, are determined to be 3.5 J/cm2 and 3.0 J/cm2, respectively. The field emission appeared only after laser irradiation of the surface at threshold voltage of 1000 V at currents from 0.7 μA to 0.7 mA. The main role of the thermogradient effect in the processes of mass transfer in prior to ablation stages of nanostructure formation under UV laser irradiation (LI) was determined. We ascertained that the residual tensile stresses appear on SiC surface as a result of laser microablation. The nanostructures obtained could be applied in the field of sensor and emitting extreme electronic devices.  相似文献   

8.
Crystalline magnesium oxide (MgO) (1 1 1), 20 Å thick, was grown by molecular beam epitaxy (MBE) on hydrogen cleaned hexagonal silicon carbide (6H-SiC). The films were further heated to 740 °C and 650 °C under different oxygen environments in order to simulate processing conditions for subsequent functional oxide growth. The purpose of this study was to determine the effectiveness and stability of crystalline MgO films and the MgO/6H-SiC interface for subsequent heteroepitaxial deposition of multi-component, functional oxides by MBE or pulsed laser deposition processes. The stability of the MgO films and the MgO/6H-SiC interface was found to be dependent on substrate temperature and the presence of atomic oxygen. The MgO films and the MgO/6H-SiC interface are stable at temperatures up to 740 °C at 1.0 × 10−9 Torr for extended periods of time. While at temperatures below 400 °C exposure to the presence of active oxygen for extended periods of time has negligible impact, exposure to the presence of active oxygen for more than 5 min at 650 °C will degrade the MgO/6H-SiC interface. Concurrent etching and interface breakdown mechanisms are hypothesized to explain the observed effects. Further, barium titanate was deposited by MBE on bare 6H-SiC(0 0 0 1) and MgO(1 1 1)/6H-SiC(0 0 0 1) in order to evaluate the effectiveness of the MgO as a heteroepitaxial template layer for perovskite ferroelectrics.  相似文献   

9.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

10.
Mo surface-modified layer in Ti6Al4V alloy was prepared using plasma surface alloying technique. Microstructure of the modified layer was analyzed using X-ray photoelectron spectroscopy (XPS), rough-meter and GDA750 glow discharge optical emission spectrometer. Phase composition of the Mo surface-modified layer was characterized by D/max 2500 X-ray diffraction. Results show that the Mo surface-modified layers consist of pure Mo surface layer with 〈1 1 0〉 and 〈2 1 1〉 orientations and diffusion layer. Mo 3d, O 1s, C 1s and Ti 2p, O 1s, C 1s XPS spectra are recorded at topsurface in the Mo-modified layer and titanium substrate respectively. Because of the different roughness and microstructure, the Mo surface-modified layer can to some extent inhibit bacteria adherence.  相似文献   

11.
Ag(TCNQ) and Cu(TCNQ) nanowires were synthesized via vapor-transport reaction method at a low temperature of 100 °C. Field emission properties of the as-obtained nanowires on ITO glass substrates were studied. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires were 9.7 and 7.6 V/μm (with emission current of 10 μA/cm2), respectively. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires decreased to 6 and 2.2 V/μm, and the emission current densities increased by two orders at a field of 8 V/μm with a homogeneous-like metal (e.g. Cu for Cu(TCNQ)) buffer layer to the substrate. The improved field emission is due to the better conduct in the nanowires/substrate interface and higher internal conductance of the nanowires. The patterned field emission cathode was then fabricated by localized growing M-TCNQ nanowires onto mask-deposited metal film buffer layer. The emission luminance was measured to be 810 cd/m2 at a field of 8.5 V/μm.  相似文献   

12.
The early stages of the Cr/6H-SiC(0 0 0 1) interface formation at room temperature were investigated using XPS, LEED and work function (WF) measurements. Upon stepwise Cr evaporation in UHV up to a thickness of 5-10 monolayers (ML) at RT, the binding energy of the XPS Cr 2p3/2 core level peak shifted from 576.1 eV, at submonolayer coverage, to 574.7 eV (corresponding to metallic Cr) for the final Cr deposit, while the binding energies of the substrate XPS core level peaks remained stable. The WF exhibited a steep decrease of about 0.5 eV from the initial SiC substrate value, upon submonolayer coverage, but then increased gradually to saturation at a value of about 4.8 eV (polycrystalline Cr film with some chemisorbed oxygen). The growth of the ultrathin film was via 3D-cluster formation. The height of the Schottky barrier for the Cr/6H-SiC(0 0 0 1) contact was found by XPS to be 0.5 ± 0.1 eV. The results, generally, indicate the absence of any extended interfacial silicide-like interaction at RT.  相似文献   

13.
Photoelectron spectroscopy, low-energy electron diffraction, and scanning probe microscopy were used to investigate the electronic and structural properties of graphite layers grown by solid state graphitization of SiC(0 0 0 1) surfaces. The process leads to well-ordered graphite layers which are rotated against the substrate lattice by 30°. On on-axis 6H-SiC(0 0 0 1) substrates we observe graphitic layers with up to several 100 nm wide terraces. ARUPS spectra of the graphite layers grown on on-axis 6H-SiC(0 0 0 1) surfaces are indicative of a well-developed band structure. For the graphite/n-type 6H-SiC(0 0 0 1) layer system we observe a Schottky barrier height of ?B,n = 0.3 ± 0.1 eV. ARUPS spectra of graphite layers grown on 8° off-axis oriented 4H-SiC(0 0 0 1) show unique replicas which are explained by a carpet-like growth mode combined with a step bunching of the substrate.  相似文献   

14.
Recently, tetramantane, a member of diamondoid series (C4n+6H4n+12), has shown to exhibit negative-electron-affinity effect which has a potential use for efficient electron emitting devices. Here, we explore the electronic property of adamantane (C10H16), the smallest member of the series. We prepare adamantane films on Si(1 1 1) substrates and then study their electronic structure with photoemission spectroscopy. Photoelectron spectra of adamantane on Si(1 1 1) have shown a peak at low-kinetic energy which could be a generic property of diamondoids. The possibility of the negative-electron-affinity effect in adamantane is further discussed.  相似文献   

15.
The silicon carbide (SiC) surface is more complex than that of silicon and can be carbon-terminated or silicon-terminated, and can exist as several reconstructions. Investigations of the surface structure as a function of temperature, under ultrahigh vacuum (UHV) conditions using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED), are presented. The 4H-SiC surface can be passivated using a silicon deposition/evaporation technique to reconstruct the surface. This has a significant effect on the electrical behaviour of metal contacts to the silicon carbide surface, critical in any electronic device. Atomic resolution STM studies of the 4H-SiC surface have revealed step features and micropipe defects in unprecedented detail. STM has also been used to image clusters of metal deposited on the 4H-SiC surface. The effect of annealing on the behaviour of these nickel clusters is also presented. The surface of the silicon carbide is extremely important in the fabrication of silicon carbide electronic devices and this paper presents a discussion of the SiC surface with particular reference to its impact on SiC device applications in power electronics.  相似文献   

16.
Zr-N diffusion barriers were deposited on the Si substrates by rf reactive magnetron sputtering under various substrate bias voltages. Cu films were subsequently sputtered onto the Zr-N films by dc pulse magnetron sputtering without breaking vacuum. The Cu/Zr-N/Si specimens were then annealed up to 650 °C in N2 ambient for an hour. The effects of deposition bias on growth rate, film resistivity, microstructure, and diffusion barrier properties of Zr-N films were investigated. An increase in negative substrate bias resulted in a decrease in deposition rate together with a decrease in resistivity. It was found that the sheet resistances of Cu/Zr-N(−200 V)/Si contact system were lower than those of Cu/Zr-N(−50 V)/Si specimens after annealing at 650 °C. Cu/Zr-N(−200 V)/Si contact systems showed better thermal stability so that the Cu3Si phase could not be detected.  相似文献   

17.
Impact of step height of silicon carbide (SiC) substrates on heteroepitaxial growth of aluminum nitride (AlN) was investigated. Step-and-terrace structures with various step heights, 6 monolayer (ML), 3ML and 1ML, were formed on 6H-SiC (0 0 0 1) vicinal substrates by high-temperature gas etching. 2H-AlN layers were grown on the substrate by plasma-assisted molecular-beam epitaxy (MBE) and then these layers were characterized by atomic-force microscopy (AFM) and X-ray diffraction (XRD). High-quality AlN can be grown on SiC substrates with 6ML- and 3ML-height step, while AlN grown on SiC substrates with 1ML-height step exhibited inferior crystalline quality. A model for high-quality AlN growth on SiC substrates with 3ML-height step is proposed.  相似文献   

18.
The effect of hydrostatic pressure on the emission spectra and fluorescence lifetime (τ) of Mn2+ in LaMgAl11O19 (LMA) crystals up to 101 kbar has been studied at room temperature. From the position of the peak (4T1 → 6A1 transition) in the emission spectra, we estimated that the pressure induced red-shift. A variation, slowly decreasing, in the fluorescence lifetime (τ) values for 4T1 → 6A1 transition was observed. The pressure-induced red-shift and lifetime variation could be described by simple models. In the considered pressure range (0-101 kbar), a good agreement between the experimental values and theoretically predicted values was obtained.  相似文献   

19.
The 96GeO-(3-χ)Al2O3-χNa2O-1NaBiO3 (χ = 0, 0.5, 1.5 molar percent designated as A1, A2 and A3) and 96GeO-(3.5-ψ)Al2O3-ψNa2O-0.5Bi2O3 (ψ = 0.5, 1, 2 molar percent designated as B1, B2 and B3) glasses were prepared by conventional melting method with the measurement of their DTA curve, fluorescence decay curve, transmission, absorption and emission spectra. The near infrared superbroadband emission characteristics of the A1, A2, B1 and B2 glasses peak at ∼1220 nm were observed when pumped by an 800 nm laser diode. The stimulated emission cross section (σp) was obtained from the emission spectra. The result indicated that the introduction of Bi5+ in NaBiO3 into raw materials could increase the emission intensity of the obtained glasses by 5.6 times than that of Bi3+ in Bi2O3, and the FWHM (Δλ) and emission lifetime (τ) at 1220 nm increased from 195 nm to 275 nm, and 280 μs to 434 μs. Meanwhile, it was found that the absorption edges were blue-shifted from 486 to 447 nm by comparing those of A1 and B1. The absorption edges were considered to be ascribed to the charge transfer from Bi3+ 6s2 to Bi5+ 6s0. Therefore we could conclude that the content of Bi5+ ions in A1 was more than that in B1 glasses. It could be deduced from the emission and absorption spectra that the stronger emission intensity and wider FWHM were due to the higher concentration of Bi5+ ion in glass. In particular, the increase of Na2O content was in proportion to the thermal stability and the value of σp × τ and σp × Δλ of glasses.  相似文献   

20.
The interface formation, electrical properties and the surface morphology of multilayered Ta/Ni/Ta/SiC contacts were reported in this study. It was found that the conducting behavior of the contacts so fabricated is much dependent on the metal layer thickness and the subsequent annealing temperature. Auger electron spectroscopy (AES) and X-ray diffraction analyses revealed that Ni2Si and TaC formed as a result of the annealing. The Ni atoms diffused downward to metal/SiC interface and converted into Ni2Si layer in adjacent to the SiC substrate. The released carbon atoms reacted with Ta atoms to form TaC layer. Ohmic contacts with specific contact resistivity as low as 3 × 10−4 Ω cm2 have been achieved after thermal annealing. The formation of carbon vacancies at the Ni2Si/SiC interface, probably created by dissociation of SiC and formation of TaC during thermal annealing, should be responsible for the ohmic formation of the annealed Ta/Ni/Ta contacts. The addition of Ta into the Ni metallization scheme to n-SiC restricted the accumulation of carbon atoms left behind during Ni2Si formation, improving the electrical and microstructure properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号