首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The surface properties of poly(vinyl alcohol) (PVA) films in the presence of 1%, 3% and 5% of collagen before and after UV-irradiation have been studied by atomic force microscopy (AFM) and by contact angle measurements. PVA films have been obtained by solvent evaporation from water solution of PVA and PVA containing small amount of collagen. After drying, the samples were irradiated with UV light wavelength λ = 254 nm in air. Surface properties before and after UV-irradiation were observed using AFM. Contact angles of two liquids: diiodomethane (D) and glycerol (G) on polymeric films were measured at constant temperature using goniometer.The results have shown that the contact angle and the surface free energy for PVA films were altered by UV-irradiation. These alterations indicate photooxidation and an increase of polarity of the surface. The comparison of surface properties of PVA films and PVA containing collagen points out that collagen is more sensitive to photooxidation than PVA and PVA/collagen blends. PVA films containing collagen easier undergo photooxidation process with formation of new polar groups than pure PVA films.  相似文献   

2.
Collagen is the most abundant protein in humans and animals, comprising of one third of the total proteins that accounts for three quarters of the dry weight skin in humans. Collagen containing a range of proteins has been reported for tissue engineering applications, but, only a small number of studies related to chemical structure evaluation of collagen are found in the literature. Collagen can be obtained from both the natural and synthetic sources and offers a wide range of biomedical applications due to its excellent biocompatibility and low immunogenicity. Hence, it is important to identify chemical structural properties of collagen and Fourier transform infrared (FTIR) appears to be a technique of choice to study their chemical structure. This review aims to highlight the use of FTIR to study collagen-based biomaterials, using it for characterization of collagen extracted from various sources. Characterization of collagen-based materials used in wound healing, skin substitutes, derma fillers, and aging of skin, collagen containing drug delivery agents, collagen-based materials used in tissue engineering, bone regeneration, and osteogenic differentiation is discussed in detail. FTIR analysis of collagen-containing materials used for dental applications, cleft-palate, and in alveolar-ridge preservation has also been highlighted.  相似文献   

3.
The surface chemical composition and surface properties of collagen/poly(vinyl pyrrolidone) (PVP) blended films before and after UV irradiation (λ = 254 nm) were investigated using X-ray Photoelectron Spectroscopy (XPS), FTIR-ATR spectroscopy and Atomic Force Microscopy (AFM).The XPS results showed that collagen is enriched on the surface of the collagen/PVP blend. The surface composition of the collagen film was changed more by UV irradiation than the surface composition of the collagen/PVP blend.FTIR-ATR spectra showed that the positions of the amide bands in collagen are more altered after UV irradiation than those for the collagen/PVP blends.AFM images showed that the collagen surface is ordered contrary to PVP. The blend surface was similar to the pure collagen surface and confirms that there is more collagen present at the surface (higher concentration of collagen at the surface compared to PVP). UV irradiation caused only the small changes in the surface morphology of the collagen/PVP films. All of the results confirm that the surface of the collagen/PVP blend is more photoresistant than collagen.  相似文献   

4.
Poly(vinyl alcohol), pectin and their blends with different components ratio were exposed to low-temperature air plasma or high energy UV-irradiation (λ = 254 nm) for the purpose of surface modification. The physico-chemical changes in surface properties have been studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. Surface free energy of polymeric films, its polar and dispersive components have been calculated by Owens-Wendt method. Moreover, the work of adhesion was estimated and the recovery of hydrophobic properties of modified films after storage have been also studied.The few seconds air-plasma treatment caused more effective surface modification than 5-6 h UV-irradiation. The observed changes were partially reversible, contrary to these caused by photo-modification.It was found that pectin/PVA (50:50) blend was characterised by larger susceptibility to plasma modification compared to pure pectin and pure PVA, whereas the photosensitivity to radiation of 254 nm wavelength was the lowest for this specimen in comparison to other studied samples.  相似文献   

5.
A novel photodegradable polyethylene-boron-goethite (PE-B-goethite) composite film was prepared by embedding the boron-doped goethite into the commercial polyethylene. The goethite catalyst was modified by boron in order to improve its photocatalytic efficiency under the ultraviolet and visible light irradiation. Solid-phase photocatalytic degradation of the PE-B-goethite composite film was carried out in an ambient air at room temperature under ultraviolet and visible light irradiation. The properties of composite films were compared with those of the pure PE films and the PE-goethite composite films through performing weight loss monitoring, scanning electron microscope (SEM) analysis, FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The photo-induced degradation of PE-B-goethite composite films was higher than that of the pure PE films and the PE-goethite composite films under the UV-irradiation, while there has been little change under the visible light irradiation. The weight loss of the PE-B-goethite (0.4 wt.%) composite film reached 12.6% under the UV-irradiation for 300 h. The photocatalytic degradation mechanism of the composite films was briefly discussed.  相似文献   

6.
江强  毛秀娟  周细应  苌文龙  邵佳佳  陈明 《物理学报》2013,62(11):118103-118103
在基底与靶材之间放置磁性强弱不同的永久磁铁来研究外加磁 场对磁控溅射制备氮化硅陷光薄膜的影响. 通过X射线衍射、原子力显微镜 (AFM) 以及紫外分光光度计分别测试了外加磁场前后所制备薄膜的组织结构、表面形貌和光学性能. 结果表明, 外加磁场后, 氮化硅薄膜依然呈现非晶结构; 但是表面形貌发生明显改变, 中心磁场1.50 T下, 薄膜表面为特殊锥状尖峰结构"类金字塔"的突起, 而且这些突起颗粒垂直于基底表面; 在 可见光及近红外范围内, 中心磁场1.50 T 下的薄膜样品平均透射率最大, 平均透射率达到90% 以上, 比未加磁场的样品提高了近1 倍, 具有很好的陷光特性. 关键词: 外加磁场 磁控溅射 氮化硅薄膜 陷光效应  相似文献   

7.
ObjectiveSurface roughness parameters of various intraocular lenses (IOLs) biomaterials using atomic force microscopy (AFM) are compared. Variation, if any, in the micro-roughness properties of different IOLs made up of the same biomaterial is also explored. Retrospective analysis of posterior capsular opacification (PCO) incidence has been followed up for a period of four years post IOL implantation to evaluate the correlation of PCO formation with surface roughness of IOLs.DesignExperimental materials study.Materials and participantsSurface characteristics of 20 different IOL models were assessed using AFM. These IOL models were made up of PMMA or HEMA or acrylic hydrophobic or acrylic hydrophilic or silicone. Retrospective analysis of PCO incidence in 3629 eyes of 2656 patients implanted with the same IOL models was performed.MethodsTopological characteristics of 20 different IOLs made up of 5 different biomaterials including (i) PMMA, (ii) HEMA, (iii) acrylic hydrophobic, (iv) acrylic hydrophilic and (v) silicone were evaluated using AFM in the tapping mode. Images were acquired with a resolution of 256 × 256 data points per scan at a scan rate of 0.5 Hz per line and a scan size of 10 × 10 μm. Rate of PCO formation in 3629 eyes of 2656 patients implanted with the five different IOL biomaterials was retrospectively analyzed.ResultsAFM images of IOL optic surfaces showed a collection of pores, grooves, ridges and surface irregularities. Surface roughness parameters of the IOL optics were significantly different on comparing lenses of different materials. Acrylic hydrophobic IOLs had minimum surface roughness while acrylic hydrophilic IOLs showed the highest surface roughness. Different IOL models of the same biomaterial showed varied topological roughness characteristics. Retrospective analyses of PCO formation rate after IOL implantation was carried out, which revealed that rate of PCO incidence, was directly proportional to the increase in surface micro-roughness of IOLs.ConclusionsAFM is a powerful technique for the topological characterization of IOLs. Acrylic hydrophobic IOLs showed minimum surface roughness properties as well as minimum PCO incidence over a period of four years post implantation. It is, therefore, tempting to consider acrylic hydrophobic IOLs over other IOL biomaterials as the ideal biocompatible material for lowering PCO incidence. These results suggest an urgent need for manufacturers to optimize the various steps involved in the fabrication of IOLs.  相似文献   

8.
The present review details the methods used for the measurement of cells and their exudates using atomic force microscopy (AFM) and outlines the general conclusions drawn by the mechanical characterization of biological materials through this method. AFM is a material characterization technique that can be operated in liquid conditions, allowing its use for the investigation of the mechanical properties of biological materials in their native environments. AFM has been used for the mechanical investigation of proteins, nucleic acids, biofilms, secretions, membrane bilayers, tissues and bacterial or eukaryotic cells; however, comparison between studies is difficult due to variances between tip sizes and morphologies, sample fixation and immobilization strategies, conditions of measurement and the mechanical parameters used for the quantification of biomaterial response. Although standard protocols for the AFM investigation of biological materials are limited and minor differences in measurement conditions may create large discrepancies, the method is nonetheless highly effective for comparatively evaluating the mechanical integrity of biomaterials and can be used for the real-time acquisition of elasticity data following the introduction of a chemical or mechanical stimulus. While it is currently of limited diagnostic value, the technique is also useful for basic research in cancer biology and the characterization of disease progression and wound healing processes.  相似文献   

9.
Poly ether ether ketone (PEEK), a synthetic polymer, is expected to be useful as a biomaterial due to its appropriate mechanical, chemical, and biocompatibility properties. However, this polymer is biologically inert, requiring surface modification to improve its adhesion to bone cells for use as a bone substrate. Surface properties, such as roughness and hydrophilicity, are important factors in the adhesion of biomaterials to the surrounding tissue; therefore, in this study, laser treatment was performed for surface modification. The aim of the research described here was to investigate the effect of two laser parameters, fluency and wavelength, on the surface roughness and hydrophilicity to determine the optimum parameters for improving surface adhesion. The surface topography and average roughness (Ra) were investigated by atomic force microscopy (AFM). Surface morphology was also observed with an optical microscope, and the hydrophilicity of the surfaces was investigated with static contact angle tests. The results obtained showed that the samples treated at the wavelength of 532?nm with fluency of 8?J/cm2, compared to fluencies of 4 and 12?J/cm2, showed improved surface properties. However, in terms of radiation wavelength, the wavelength of 1064?nm at these three fluencies showed the most promising results for enhancing the surface properties of PEEK for bone implant applications.  相似文献   

10.
Surface modification of biomaterials to improve biocompatibility without changing their bulk properties is desired for many clinical applications and has become an emerging technology in biomaterial research and industry. In the present study, a sample electrochemical method of coating the solid surfaces of copper, with a film of apatite, was developed. Thin layer of calcium phosphate crystals formed on the surfaces of copper, was carried out by electrochemical methods, and characterized by XRD, infrared spectroscopy and chemical analysis.  相似文献   

11.
Ultraviolet (UV) fluorescent lamps are widely used in the manufacturing process of biomaterials. The possibility of replacing these lamps with ultraviolet light emitting diodes (UV-LEDs) was investigated and the results are presented here. A number of emission characteristics, including the spectral output and intensity of both light sources were measured and compared. The warm up time of the UV-LED was found to be faster than that of the fluorescent lamp while their stabilities were found to be comparable. The ability of each source to initiate photopolymerisation in a biomaterial sample was monitored using Fourier Transform Infrared spectroscopy and the percentage polymerisation calculated. The results presented here show that UV-LEDs are a viable alternative to UV fluorescent lamps in the manufacturing process of biomaterials.  相似文献   

12.
《中国物理 B》2021,30(9):97801-097801
The optical properties of materials are of great significance for their device applications. Different numbers of krypton ions are doped into high-quality Zn-polar Zn O films fabricated by molecular beam epitaxy(MBE) on sapphire substrates through ion implantation. Krypton is chemically inert. The structures, morphologies, and optical properties of films are measured. The x-ray diffraction(XRD) spectra confirm the wurtzite structures of Zn-polar Zn O films. Atomic force microscopy(AFM) results show that the films have pit surface structure and higher roughness after Kr ion implantation. A detailed investigation of the optical properties is performed by using the absorption spectrum, photoluminescence(PL), and spectroscopic ellipsometry(SE). The absorption spectrum is measured by UV-visible spectrophotometer and the bandgap energy is estimated by the Tauc method. The results show that the absorption increases and the bandgap decreases after Kr ion implantation. Moreover, the Kr ion implantation concentration also affects the properties of the film. The ellipsometry results show that the films' refractive index decreases with the Kr ion implantation concentration increasing. These results can conduce to the design and optimization of Kr ion-implanted polar Zn O films for optoelectronic applications.  相似文献   

13.
Porous mixtures of aluminosilicate/calcium phosphate have been studied for biomaterials applications. Aluminosilicates formed with an inorganic polymeric constitution present amorphous zeolites because of their 3D network structure and present the ability to link to bone matrix. Amorphous geopolymers of the potassium-poly(sialate)-nanopolymer type were synthesised at low temperature and studied for their use as potential biomaterials. They were mixed with 13% weight of calcium phosphate like biphasic hydroxyapatite and β-tricalcium phosphate. In this study, “in vivo” experiments were monitored to evaluate the biocompatibility, the surface and the interface behaviour of these composites when used as bone implants. Moreover, it has been demonstrated using histological and physicochemical studies that the developed materials exhibited a remarkable bone bonding when implanted in a rabbit's thighbone for a period of 1 month. The easy synthesis conditions (low temperature) of this composite and the fast intimate links with bone constitute an improvement of synthetic bone graft biomaterial.  相似文献   

14.
The industrial use of polypropylene (PP) films is limited because of undesirable properties such as poor adhesion and printability. In the present study, a DC glow discharge plasma has been used to improve the surface properties of PP films and make it useful for technical applications. The change in hydrophilicity of modified PP film surface was investigated by contact angle (CA) and surface energy measurements as a function of exposure time. In addition, plasma-treated PP films have been subjected to an ageing process to determine the durability of the plasma treatment. Changes in morphological and chemical composition of PP films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap shear strength. The results show that the surface hydrophilicity has been improved due to the increase in the roughness and the introduction of oxygen-containing polar groups. The AFM observation on PP film shows that the roughness of the surface increased due to plasma treatment. Analysis of chemical binding states and surface chemical composition by XPS showed an increase in the formation of polar functional groups and the concentration of oxygen content on the plasma-processed PP film surfaces. T-peel and lap shear test for adhesion strength measurement showed that the adhesion strength of the plasma-modified PP films increased compared with untreated films surface.  相似文献   

15.
In recent years carrier-mediated drug delivery has emerged as a powerful methodology for the treatment of various pathologies. The therapeutic index of traditional and novel drugs is enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or intracellular compartment, the control over release kinetics, the protection of the active agent, or a combination of the above. Collagen is an important biomaterial in medical applications and ideal as protein-based drug delivery platform due to its special characteristics, such as biocompatibility, low toxicity, biodegradability, and weak antigenicity. While some many attempts have been made, further work is needed to produce fully biocompatible collagen hydrogels of desired size and able to release drugs on a specific target. In this article we propose a novel method to obtain spherical particles made of polymerized collagen surrounded by DMPC liposomes. The liposomes allow to control both the particles dimension and the gelling environment during the collagen polymerization. Furthermore, an optical based method to visualize and quantify each step of the proposed protocol is detailed and discussed.  相似文献   

16.
The surface properties of hydroxypropylcellulose (HPC) and polyethylenimine (PEI) blend films prepared by solution casting method before and after annealing were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. SEM and AFM analysis of the blends revealed that the PEI component segregated on the surface of the air-surface side of the blend films with increasing annealing temperature. The band intensity of PEI component at 1630 cm−1 also increased depending on annealing temperature. The water contact angle decreased abruptly with increasing annealing temperature and reached almost 31° on the surface of the air-surface side of the blends at 150 °C. The results of these studies showed that the PEI chains with low surface energy segregated or enriched mainly on the surface of the air-surface side, and that, on the other hand, HPC chains with high surface energy oriented to the surface of the glass-surface side and inside of the films with increasing annealing temperature.  相似文献   

17.
Graphene and its composite materials are very important in many disciplines of science and have been used enormously by researchers since their discovery in 2004. These are a new group of compounds, and are also wonderful model systems for quantum behavior studies. Their properties like exceptional conductivity, biocompatibility, surface area, mechanical strength, and thermal properties make them rising stars in the scientific community. Graphene and its composite compounds are utilized widely in different medical applications, for example, biosensing of biological compounds responsible for disease development, bioimaging of various cells, tissues, microorganisms, animal models, etc. In addition, they are used for enhancing and supporting the stem cell differentiation, i.e., regenerative medicine for regeneration studies of various human organs, tissue engineering in biology for the development of carrier materials, as well as in bone reformation. This review focuses on the modification procedure involved in the fabrication of graphene‐based biomaterials for various applications and recent developments in research related to graphene and graphene‐based materials in biosensing, optical sensing, gas sensing, drug, gene, protein delivery, tissue engineering, and bioimaging. In addition, the potential toxicological effects of graphene‐based biomaterials are discussed.  相似文献   

18.
《Composite Interfaces》2013,20(4-6):423-439
The surface behaviour of a two-phase polymer mixture depends on the chemical structure of the polymer components, the interaction between the two polymers and the processing conditions. The microscopic morphology and the surface composition need to be known in order to fully utilize the thin film properties. The technique of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to obtain the molecular surface composition of thin films of blends and block copolymers. The depth profiling tool of Nano-SIMS, a dynamic SIMS technique, helps to provide the chemical mapping of the surface in 2D and 3D. The surface morphology is investigated using AFM. Thin films of PS and PMMA diblock copolymers with molecular weight of 12K-12K and 10K-10K and blends of PS/PMMA (10K/10K) for thicknesses ranging from 5 nm to 50 nm are examined. For the blends, the ToF-SIMS spectra for all the thicknesses show the same behaviour of a high increase of PMMA on the surface after annealing. Nano-SIMS images reveal the formation of nanostructures on the annealed surfaces and AFM studies show these nanostructures to be droplets having distinct phase shift from the surrounding matrix. The droplet dimensions increase with the increase of the thickness of the film but the absolute intensity from the ToF-SIMS spectra for all the annealed films remains almost the same. For the copolymers, the ToF-SIMS spectra show that there is a decrease of PMMA on the surface for the annealed films when compared to the as-cast ones. AFM morphology reveals that, for different thicknesses, annealing induces different topographical features like droplets, holes, spinodal patterns, etc. but with no distinct phase shift between the patterns and the surrounding matrix. The two different copolymers of comparable molecular weight are found to exhibit very different topography even when the thickness of the films remained the same. The surface composition from the ToF-SIMS data, however, was not found to vary even when the topography was completely different.  相似文献   

19.
New drug delivery systems based on hydroxypropyl cellulose (HPC) and different percents of glucose were prepared and characterized to check their suitability as UV resistant patches. The spectral absorption properties of the HPC and HPC-glucose blends before and after UV irradiation were analyzed. The surface polarity and hydrophilicity were correlated with the morphology of the films and analyzed with respect to the UV exposure time and the embedded amount of glucose. The effects of UV radiation on in vitro evaluation of glucose release from the HPC films are reported. The mechanism involved in the drug release process, evaluated using the Korsmeyer-Peppas equation, was dependent on the introduced amount of glucose and less on the UV exposure time. A more polar, smoother, and less dense surface releases the glucose over larger periods of time, making the system with lower percents of glucose more adequate for the pursued purpose.  相似文献   

20.
Native and chemically stabilized porcine pericardium tissue was imaged by the contact mode atomic force microscopy (AFM), in air. Chemically stabilized pericardium is used as a tissue-derived biomaterial in various fields of the reconstructive and replacement surgery. Collagen type I is the main component of the fibrous layer of the pericardium tissue. In this study, the surface topography of collagen fibrils in their native state in tissue and after chemical stabilization with different cross-linking reagents: glutaraldehyde (GA), dimethyl suberimidate (DMS) and tannic acid (TA) was investigated. It has been found that chemical stabilization causes considerable changes in the surface topography of collagen fibrils as well as in the spatial organization of the fibrils within the tissue. The observed changes in the D-spacing pattern of the collagen fibril correspond to the formation of intrafibrilar cross-links, whereas formation of interfibrilar cross-links is mainly responsible for the observed tangled spatial arrangement of fibrils and crimp structure of the tissue surface. The crimp structure was distinctly seen for the GA cross-linked tissue. Surface heterogeneity of the cross-linking process was observed for the DMS-stabilized tissue. SDS-PAGE electrophoresis was performed in order to evaluate the stabilization effect of the tissues treated with the cross-linking reagents. It has been found that stabilization with DMS, GA or TA enhances significantly the tissue resistance to SDS/NaCl extraction. The relation between the tissue stability and changes in the topography of the tissue surface was interpreted in terms of different nature of cross-links formed by DMS, GA and TA with collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号