首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodesorption rates for the desorption of ammonia from Ru(0 0 0 1) are calculated by Transition State Theory including small curvature tunneling corrections. The potential energy surface is derived on a model cluster employing hybrid density functional theory (B3LYP). Two desorption pathways can be identified, just distinguished by the orientation of the leaving ammonia entity. It is found that the rate dominating mechanism comprises an umbrella-like flipping movement of the hydrogen atoms during the desorption. Nevertheless tunneling does not play any significant role in the reaction as the hydrogen movements are shown to occur at the low energy regions of the barrier.  相似文献   

2.
We present what we believe to be the first morphological evidence for the occurrence of surface pre-melting on the Si(1 1 1) surface. Our results complement the extensive previous evidence from diffraction and ion scattering techniques for the presence of pre-melted (liquid-like) layers on Si(1 1 1) below the bulk melting temperature and also suggest how atomic steps are involved in the initiation of such layers. Our results are based on atomic force microscopy studies of morphologies that are preserved when surfaces are annealed in a range of high temperatures and then rapidly cooled to room temperature for observation. A unique feature of the experiments is the use of specially prepared atomically flat or very low step density surfaces; this allows us to see how the liquid-like morphologies are associated with the steps and also allows the high temperature structures to survive the cooling process without being absorbed into the steps which normally would exist on a surface vicinal to (1 1 1). Quenched-in structures ascribed to pre-melting also act as sinks for diffusing ‘excess’ adatoms generated by the (1 × 1) to (7 × 7) transition and this leads to the formation of dendritic islands.  相似文献   

3.
High density and ultrasmall size of Ge quantum dots (QDs) have been achieved directly on Si(0 0 1) (2 × 1) reconstruction surface. Their detailed morphology was observed by atomic force microscope (AFM) and shows that small pyramids, small domes, huts, and multi-headed large domes coexist in the film grown at 400 °C, while small domes and multi-headed large domes formed at 450 °C. Their low temperature photoluminescence (PL) showed that a very strong non-phonon (NP) peak with a large blue shift of 0.19 eV at 14 K, which can be attributed to their very high areal density, 5.2 × 1011 cm−2, and sub-10-nm mean size, 7.6 ± 2.3 nm.  相似文献   

4.
Morphology of high-vacuum deposited rubrene thin films on the annealed (0 0 0 1) vicinal sapphire surfaces was studied by atomic force microscopy in non-contact mode. Atomic force microscopy images of rubrene thin films indicate that a regular array of steps on the sapphire surface acts as a template for the growth of the arrays of rubrene nanosize wires. To further demonstrate that morphological features of a substrate are crucial in determining the morphology of rubrene layers we have grown rubrene on the sapphire surfaces that were characterized by the terrace-and-step morphology with islands. We have found preferential nucleation of rubrene molecules at the intersection between a terrace and a step, as well as around the islands located on terraces.  相似文献   

5.
A sputter-cleaned indium-rich (2 × 4) InP(0 0 1) surface was investigated by non-contact scanning atomic force microscopy (NCAFM). Atomically-resolved images of the surface exhibit two different patterns. The patterns can be interpreted within the mixed dimer model of (2 × 4) reconstructed InP(0 0 1) surface. It is shown that due to contrast formation mechanism in NCAFM the features resolved are in close correspondence to scanning tunnelling microscopy (STM) data. Due to chemical interaction a P-terminated tip gives the image similar to an empty-state STM image, whereas an In-terminated tip gives the image resembling a filled-state STM one. Moreover, it is shown that due to dipole-dipole interaction, NCAFM can be sensitive to orientation of In-P dimers.  相似文献   

6.
Evolution of the (0 0 0 1) α-Al2O3 surface morphology upon annealing was studied using atomic force microscopy. The annealing protocol included temperatures of 1200 and 1500 °C and different time. Vicinal Al2O3 (0 0 0 1) surfaces annealed at 1200 °C exhibit initial localized step coalescence that evolves into terrace-and-step with island morphology that persists for several hours. Annealing at 1500 °C results in initial step coalescence on a global scale, and yields a terrace-and-step morphology with an indication of step bunching after longer annealing times.  相似文献   

7.
We achieved electron beam (e-beam) patterning without a photoresist on a Cl-terminated Si(0 0 1) surface. Synchrotron radiation photoemission spectroscopy and scanning photoelectron microscopy were employed to investigate the surface chemical state and pattern formation. The Cl-Si bonds were easily broken by the irradiation with an e-beam of 1 keV, leading to a pattern formation through the adsorption of residual molecules of water and hydrocarbon at the exposed Si dangling bond sites. In addition, we demonstrated the selective adsorption of desired molecules on the surface by e-beam irradiation in environments consisting of different gases, such as oxygen, ammonia, and 1-butanethiol.  相似文献   

8.
We have discriminated individual Ge atoms from the intermixed Ge/Si(1 1 1)-(7 × 7) surface using a non-contact atomic force microscope at a room temperature environment. In fact, Si-Ge (IV-IV) binary system is considered as one of the most difficult systems for atomic discrimination among atoms in the IV group because of the similarities in the electronic and chemical properties. However, in this study, we found one of the most attractive tools to discriminate a specific atom from the others even in the difficult Si-Ge system. Ge atoms are shown as dim spots in comparison to Si atoms with bright spots on the intermixed surface by a weak chemical bonding energy and/or a relaxation effect despite large atomic radius and high spatial position in both variable frequency shift and topographic images. The discrimination of individual atoms with respect to the chemical interaction variation will further provide a chance to manipulate different atomic species and assemble various nanostructures in near future.  相似文献   

9.
The growth of thin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) films on a 3C-SiC(0 0 1)c(2 × 2) substrate has been studied by means of photoelectron spectroscopy (PES) and atomic force microscopy (AFM). In the first monolayer the molecules interact with the substrate mainly through the O atoms in the end groups of the molecule. The O atoms have a higher binding energy in the first molecular layer compared to the following layers. No chemical shifts are observed in the Si 2p spectra or in the C 1s spectra from the perylene core of the molecules. From the VB spectra and LEED pattern we conclude that the substrate remains in the c(2 × 2) reconstruction after PTCDA deposition. For thicker films a Stranski-Krastanov film growth was observed with flat lying molecules relative to the substrate.  相似文献   

10.
Evolution of surface structure during the annealing of e-beam evaporated Ti films is studied by means of atomic force microscopy (AFM). Image variography and power spectral density analysis are used to study scaling properties of the films, ranging from 50 nm to 20 μm length scale. No particular grain size is observed up to 473 K. At 673 K, grain size of ∼250 nm are formed and coalesced to form bigger grain size upon further annealing. At 473 K, RMS roughness dropped at all length scale and became rougher at 673 K with an increasing trend up to 873 K. Clustering at 673 K indicates Kosterlitz-Thaouless [J.M. Kosterlitz, D.J. Thaouless, J. Phys. Chem. 6 (1973) 1181] type phase transition at the surface. The observed transition is also consistent with existing scaling laws.  相似文献   

11.
Exchange force of a ferromagnetic Fe probe on antiferromagnetic NiO(0 0 1) surface has been investigated by means of a first-principles calculation. Calculated exchange force images show a clear spin image when the probe is located within 1 Å above the contact point. We can see antiferromagnetic pattern of the surface Ni atoms along the [1 1 0] direction, and asymmetric feature around surface O sites. The main contrast of Ni comes from the direct exchange interaction between the Fe probe and the surface Ni atom, while the asymmetric image possibly comes from the super exchange interaction between the Fe probe and the second layer Ni atom via the surface O. Such asymmetric feature is a key proof of the exchange force microscope image on observation.  相似文献   

12.
A para-sexiphenyl monolayer of near up-right standing molecules (nominal thickness of 30 Å) is investigated in-situ by X-ray diffraction using synchrotron radiation and ex-situ by atomic force microscopy. A terrace like morphology is observed, the step height between the terraces is approximately one molecular length. The monolayer terraces, larger than 20 μm in size, are extended along the [0 0 1] direction of the TiO2(1 1 0) substrate i.e. along the Ti-O rows of the reconstructed substrate surface. The structure of the monolayer and its epitaxial relationship to the substrate is determined by grazing incidence X-ray diffraction. Extremely sharp diffraction peaks reveal high crystalline order within the monolayer, which was found to have the bulk structure of sexiphenyl. The monolayer terraces are epitaxially oriented with the (0 0 1) plane parallel to the substrate surface (out-of-plane order). Four epitaxial relationships are observed. This in-plane alignment is determined by the arrangement of the terminal phenyl rings of the sexiphenyl molecules parallel to the oxygen rows of the substrate.  相似文献   

13.
Laterally resolved topography and Contact Potential Difference (CPD) images, acquired during the exposure of clean Si(1 1 1) 7 × 7 to molecular oxygen at room temperature, show a heterogeneous oxidation process, without preference for step edges. The increase of and lateral changes in work function variations show that the CPD variations of the final oxide film are related to the silicon/oxide interface. The molecular Höfer precursor has a pronounced influence on the development of the interface bonding.  相似文献   

14.
The hydrogenation of ethylene on Ni(1 0 0) surface has been studied by TDS. The decrease in the bonding energy with increasing coverage is revealed for both of adsorbed hydrogen and ethylene by the shift of desorption to lower temperatures. Ethane formation is only observed on the preadsorbed hydrogen coverage exceeding 0.5 monolayer (ML), coupled with the growth of H2 shoulder peak at lower temperatures. Further increase of H coverage to saturation reduces the bonding energy of subsequently adsorbed ethylene by 15 kJ/mol and decreases the saturation coverage of ethylene to about one-third on the clean surface. This leads to the shift of ethane desorption from 250 to 220 K and an appearance of additional ethane peak at 180 K. The latter ethane formation coincides with the hydrogenation of surface ethyl species derived from ethyl iodide as a precursor. It indicates that the rate of ethyl formation on the surface would be comparable to that of subsequent hydrogen addition to the surface ethyl species in the hydrogenation of ethylene when the preadsorbed hydrogen coverage approaches 1.0 ML.  相似文献   

15.
We investigated the kinetics governing the transition from surface (2D) to bulk (3D) oxide growth on Pt(1 0 0) in ultrahigh vacuum as a function of the surface temperature and the incident flux of an oxygen atom beam. For the incident fluxes examined, the bulk oxide formation rate increases linearly with incident flux (ΦO) as the oxygen coverage increases to about 1.7 ML (monolayer) and depends only weakly on the surface temperature in the limit of low surface temperature (TS < 475 K). In contrast, in the high temperature limit (TS > 525 K), the bulk oxide formation rate increases with for oxygen coverages as high as 1.6 ML, and decreases with increasing surface temperature. We show that the measured kinetics is quantitatively reproduced by a model which assumes that O atoms adsorb on top of the 2D oxide, and that this species acts as a precursor that can either associatively desorb or react with the 2D oxide to form a 3D oxide particle. According to the model, the observed change in the flux and surface temperature dependence of the oxidation rate is due to a change in the rate-controlling steps for bulk oxide formation from reaction at low temperature to precursor desorption at high temperature. From analysis of flux-dependent uptake data, we estimate that the formation rate of a bulk oxide nucleus has a fourth-order dependence on the precursor coverage, which implies a critical configuration for oxide nucleus formation requiring four precursor O atoms. Considering the similarities in the development of surface oxides on various transition metals, the precursor-mediated transition to bulk oxide growth reported here may be a general feature in the oxidation of late transition metal surfaces.  相似文献   

16.
Jakub Drnec 《Surface science》2009,603(13):2005-2014
The adsorption of Cs on Pt(1 1 1) surfaces and its reactivity toward oxygen and iodine for coverages θCs?0.15 is reported. These surfaces show unusual “anomalous” behavior compared to higher coverage surfaces. Similar behavior of K on Pt(1 1 1) was previously suggested to involve incorporation of K into the Pt lattice. Despite the larger size of Cs, similar behavior is reported here. Anomalous adsorption is found for coverages lower than 0.15 ML, at which point there is a change in the slope of the work function. Thermal Desorption Spectroscopy (TDS) shows a high-temperature Cs peak at 1135 K, which involves desorption of Cs+ from the surface.The anomalous Cs surfaces and their coadsorption with oxygen and iodine are characterized by Auger Electron Spectroscopy (AES), TDS and Low Electron Energy Diffraction (LEED). Iodine adsorption to saturation on Pt(1 1 1)(anom)-Cs give rise to a sharp LEED pattern and a distinctive work function increase. Adsorbed iodine interacts strongly with the Cs and weakens the Cs-Pt bond, leading to desorption of CsxIy clusters at 560 K. Anomalous Cs increases the oxygen coverage over the coverage of 0.25 ML found on clean Pt. However, the Cs-Pt bond is not significantly affected by coadsorbed oxygen, and when oxygen is desorbed the anomalous cesium remains on the surface.  相似文献   

17.
The development of contact potential difference (CPD) inhomogeneities on oxide-covered silicon samples was investigated by monitoring the CPD of a clean Si(0 0 1) 2 × 1 surface during exposure to molecular oxygen with Kelvin Probe Force Microscopy. A steady fluctuation level is reached within the completion of a monolayer of oxide. Non-continuous oxygen exposure at room temperature and at lower temperatures unequivocally demonstrates the coexistence of two oxidation processes. One of these processes involves a metastable precursor to oxygen dissociation.  相似文献   

18.
The adsorption and desorption of glycine (NH2CH2COOH), vacuum deposited on a NiAl(1 1 0) surface, were investigated by means of Auger electron spectroscopy (AES), low energy electron diffraction (LEED), temperature-programmed desorption, work function (Δφ) measurements, and ultraviolet photoelectron spectroscopy (UPS). At 120 K, glycine adsorbs molecularly forming mono- and multilayers predominantly in the zwitterionic state, as evidenced by the UPS results. In contrast, the adsorption at room temperature (310 K) is mainly dissociative in the early stages of exposure, while molecular adsorption occurs only near saturation coverage. There is evidence that this molecularly adsorbed species is in the anionic form (NH2CH2COO). Analysis of AES data reveals that upon adsorption glycine attacks the aluminium sites on the surface. On heating part of the monolayer adsorbed at 120 K is converted to the anionic form and at higher temperatures dissociates further before desorption. The temperature-induced dissociation of glycine (<400 K) leads to a series of similar reaction products irrespective of the initial adsorption step at 120 K or at 310 K, leaving finally oxygen, carbon and nitrogen at the surface. AES and LEED measurements indicate that oxygen interacts strongly with the Al component of the surface forming an “oxide”-like Al-O layer.  相似文献   

19.
Direct grafting of organic monolayers on Si is of prime interest in order to give specific properties to a silicon surface. However, for microelectronics applications, this possibility is hampered by the limited stability of the grafted layers. It has been previously established that alkyl layers attached to Si surfaces through Si-C bonds become unstable at 250-300 °C, by desorption of alkenes. Changing the nature of the bonding to the surface might allow one to circumvent this desorption pathway and increase the layer stability. In our work, decanol and decyl aldehyde are reacted with the Si(1 1 1)-H surface at ∼100 °C during 20 h in order to obtain alkoxy monolayers. FTIR measurements performed in ATR geometry show that the grafted molecule surface coverage is on the order of 33% after reaction with decanol and 50% after reaction with decyl aldehyde. Characterization by AFM essentially reveals that the morphology of the grafted surfaces is unaffected as compared to that of Si-H surfaces. However, the edges of the terraces at alcohol-grafted surfaces exhibit some pitting, probably due to the presence of water in the grafting liquid. Thermal stability studies show that alkoxy chains progressively disappear from the Si surface between 200 and 400 °C. From the CH2/CH3 ratio in the CH region (2760-3070 cm−1), it appears that the chains undergo progressive dissociation by C-C bond breaking before their complete disappearance from the surface. Therefore, the thermal behaviour of alkoxy monolayers appears quite distinct from that of alkyl monolayers that tend to leave the surface in a much narrower temperature range (250-350 °C), essentially via breaking of the Si-C bonds.  相似文献   

20.
We have studied desorption kinetics of deuterium molecules from a Si(1 0 0) surface by means of temperature-programmed desorption (TPD) spectra and isothermal desorptions.Three desorption components, denoted as β1,A,β1,B, and C, can be distinguished in semi-logarithmic plots of the TPD spectra.Their peak positions and intensities are strongly affected by the surface preparation methods employed, either with or without annealing to control the initial D coverage .Peak C appears at the leading edge of the TPD peak.It accounts for only about 5% of the TPD peak at and it diminishes rapidly with decreasing , vanishing at .In contrast, together the β1,A and β1,B peaks account for the whole TPD peak at any less than 1.0 ML. The maximum of the β1,A peak is nearly constant at around the maximum temperature of the TPD peak.On the other hand, the β1,B peak appears on the high-temperature side of the TPD peak and it systematically shifts to higher temperatures with decreasing .These results imply that first- and second-order kinetics are operating for the β1,A and β1,B desorptions, respectively.Isothermal desorption experiments confirm the above predicted kinetics for a limited region, namely .From the results for the rate curve analysis, the desorption barriers are evaluated to be 1.6 ± 0.1 eV and 1.8 ± 0.1 eV for the β1,A and β1,B desorptions, respectively.These values are substantially lower than the widely accepted value of ∼2.5 eV. To reproduce the measured TPD spectra we take the Arrhenius-type rate equation containing the first- and second-order rate terms for the β1,A and β1,B desorptions.The TPD spectra measured for can be reasonably fit with the proposed rate equation when the values given above for Ed,A and Ed,B are used. For , however, the TPD curves are not fit with the same values; rather, the best-fit curves require values for Ed,A and Ed,B larger than those given above. Combining the present kinetics results with those obtained by STM along with the studies, the β1,A and β1,B peaks may be attributed to desorption along the 2H path, while peak C may be attributed to desorption along the 4H path. The atomistic desorption mechanism as well as the energy relationship between the desorption barrier and isosteric heat of adsorption are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号