首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
All partially invariant solutions in terms of the group of extensions for a model of radial motions of an ideal gas are found. The solutions are obtained by the method of separation of variables in an equation containing functions of one variable but different functions of different independent variables. The solutions predict different continuous unsteady convergence or expansion of the gas under the action of a piston with a point sink or source. If the sink or source affects all particles simultaneously, a collapse or an explosion occurs. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 26–34, September–October, 2007.  相似文献   

2.
This paper deals with one insufficiently studied submodel of invariant solutions of rank 1 of the equations of gas dynamics. It is shown that, in cylindrical coordinates, the submodel without swirling reduces to a system of two ordinary differential equations. For the equation of state with additional invariance, a self-similar system is obtained. A pattern of phase trajectories is constructed, and particle motion is studied using asymptotic methods. The obtained solutions describe unsteady flows over axisymmetric bodies with possible strong discontinuities. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 46–52, March–April, 2009.  相似文献   

3.
Equations are obtained for two-dimensional transonic adiabatic (nonisoenergetic and nonisoentropic) vortex flows of an ideal gas, using the natural coordinates (=const is the family of streamlines, and =const is the family of lines orthogonal to them). It is not required that the transonic gas flow be close to a uniform sonic flow (the derivation is given without estimates). Solutions are found for equations describing vortex flows inside a Laval nozzle and near the sonic boundary of a free stream.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 105–109, September–October, 1973.  相似文献   

4.
At the present time, there are several different equations for describing a transonic, nonsteady, irrotational flow of an ideal perfect gas ([1], Table 1), depending on the ratios between the small characteristic parameters of the flow. In order to extend the range of application of these equations, a composite equation is formed from them (for example, the equations for small and large Strouhal numbers in the theory of oscillation of a wing are combined). In this paper, a more general equation is obtained for the plane flow of this class by means of natural orthogonal coordinates (family of equipotential lines and streamlines) without the use of estimates, for which the equation by comparison with the composite equation contains a new nonlinear term. Accurate solutions of the equation are found, describing nonsteady transonic flows in plane nozzles; one of them describes the process of the establishment of a design cycle in Laval nozzles with immovable walls.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 105–109, January–February, 1977.  相似文献   

5.
6.
7.
This article describes two methods for calculating two-layer flows. The first is a generalization of a numerical method for solving the inverse problem [1] for the case of two-layer flows, without taking mixing into account. The second is a method of characteristics, for calculating a two-layer flow in a supersonic nozzle. In this case, the usual method of characteristics is changed in such a way that it is possible to calculate a point on the interface between two layers having different adiabatic indices, and different total pressures and temperatures. This article also gives the results of calculation of two-layer flows in nozzles with different adiabatic indices and different ratios of the mass flow rates of the gas in the layers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 76–81, July–August, 1970.The calculations were programmed and carried out by G. D. Vladimirova and M. F. Tamarovskii, to whom the author expresses his thanks.  相似文献   

8.
Using the finite-difference equations of Godunov [1, 2], the problem of the behavior of an arbitrarily swirling gas flow in a Laval nozzle is solved. Numerical calculations relating to a variety of flows indicate that the integrated parameter of the swirling intensity of the flow , obtained by solving the linearized equations [3] of radially balanced, slightly swirling gases, provides a fair model for any arbitrarily swirling flows. This principle may be used to a reasonable degree of accuracy for calculations up to a swirling intensity such that the flow-rate coefficient of the nozzle falls by a few tens of percents. Flows containing reverse-circulation regions may also be considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 85–92, November–December, 1973.In conclusion, the author wishes to thank A. N. Kraiko for help and constant interest in the work, M. Ya. Ivanov for presenting the computer programs, and L. P. Frolova and V. M. Shuvarikova for setting out the graphical material.  相似文献   

9.
V. M. Bykov 《Fluid Dynamics》1981,16(6):812-817
Flows with constant vorticity are widely used as local models of more complicated flows [1]. In many cases, such flows are stable against finite two-dimensional perturbations. In particular, the inviscid plane-parallel Couette flow has the property of nonlinear stability. Similar treatment of a class of axisymmetric flows yields nonlinear stability of a spherical Hill vortex and inviscid Poiseuille flow in a circular tube with respect to axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 16–21, October–December, 1981.  相似文献   

10.
The equations of one-dimensional and plane steady adiabatic motion of an ideal gas are transformed to a new form in which the role of the independent variables are played by the stream function and the function introduced by Martin [1, 2], It is shown that the function retains a constant value on a strong shock wave (and on a strong shock for plane flows). For one-dimensional isentropic motions the resulting transformation permits new exact solutions to be obtained from the exact solutions of the equations of motion. It is shown also that the one-dimensional motions of an ideal gas with the equation of state p=f(t) and the one-dimensional adiabatic motions of a gas for which p=f() are equivalent (t is time, is the stream function). It is shown that if k=s=–1, m and n are arbitrary (m+n0) and =1, the general solution of the system of equations which is fundamental in the theory of one-dimensional adiabatic self-similar motions [3] is found in parametric form with the aid of quadratures. Plane adiabatic motions of an ideal gas having the property that the pressure depends only on a single geometric coordinate are studied.  相似文献   

11.
We obtain the solution describing adiabatic flows of an ideal gas characterized by the two parameters a and b such that [a]=L m+1 T –1, [b]=ML –2–2m where m is arbitrary (m > 0).h This solution permits the construction of flows containing shocks.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 3, pp. 71–73, May–June, 1969.  相似文献   

12.
13.
14.
15.
The results of the numerical simulation of three problems of ideal gas flow with shock waves, which admit self-similar solutions, are presented. These problems are the double Mach-type reflection of a shock from a wedge, the breakdown of a combined discontinuity on a 90° sharp corner, and the outflow of a supersonic jet from an expanding slot. It is shown that for certain input data the self-similar solution may become unstable and is replaced by a fluctuating flow. The reasons for the generation of these fluctuations and their mechanism are discussed. Volgograd. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 166–175, July–August, 1998.  相似文献   

16.
All irreducible regular partially invariant submodels with one noninvariant function for the equations of ideal magnetohydrodynamics are constructed. The submodels are completed to involution, and partially integrated. The submodels specify Ovsyannikov vortex type motion or motion with homogeneous deformation in some spatial directions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 5–15, March–April, 2009.  相似文献   

17.
The results are presented of a calculation of cavity flow in an axisymmetric channel with an annular obstacle. The problem was suggested to the author by G. B. Tsvetnov.The problem is solved by the method published in [1, 2].  相似文献   

18.
19.
An asymptotic solution is found for the direct problem of the motion of an arbitrarily vortical helical ideal gas flow in a nozzle. The solution is constructed in the form of double series in powers of parameters characterizing the curvature of the nozzle wall at the critical section and the intensity of stream vorticity. The solution obtained is compared with available theoretical results of other authors. In particular, it is shown that it permits extension of the known Hall result for the untwisted flow in the transonic domain [1]. The behavior of the sonic line as a function of the vorticity distribution and the radius of curvature of the nozzle wall is analyzed. Spiral flows in nozzles have been investigated by analytic methods in [2–5] in a one-dimensional formulation and under the assumption of weak vorticity. Such flows have been studied by numerical methods in a quasi-one-dimensional approximation in [6, 7]. An analogous problem has recently been solved in an exact formulation by the relaxation method [8, 9]. A number of important nonuniform effects for practice have consequently been clarified and the boundedness of the analytical approach used in [2–7] is shown.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 126–137, March–April, 1978.The authors are grateful to A. N. Kraiko for discussing the research and for valuable remarks.  相似文献   

20.
G. Nath 《Shock Waves》2014,24(4):415-428
Similarity solutions are obtained for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential cylindrical shock wave propagating in a rotational axisymmetric dusty gas, which has variable azimuthal and axial fluid velocities. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to obey exponential laws. The dusty gas is assumed to be a mixture of small solid particles and a perfect gas. To obtain some essential features of the shock propagation, small solid particles are considered as a pseudo-fluid; it is assumed that the equilibrium flow conditions are maintained in the flow field, and that the viscous stresses and heat conduction in the mixture are negligible. Solutions are obtained for the cases when the flow between the shock and the piston is either isothermal or adiabatic, by taking into account the components of the vorticity vector. It is found that the assumption of zero temperature gradient results in a profound change in the density distribution as compared to that for the adiabatic case. The effects of the variation of the mass concentration of solid particles in the mixture \(K_p\) , and the ratio of the density of solid particles to the initial density of the gas \(G_a\) are investigated. A comparison between the solutions for the isothermal and adiabatic cases is also made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号