共查询到20条相似文献,搜索用时 15 毫秒
1.
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid. 相似文献
2.
Metallic nanoparticles of rhodium were prepared by using the newly synthesized N,N-bis-succinamide-based dendrimer as stabilizers. The Rh nanoparticles were spherical shaped with a particle size of ∼2 nm. The dendrimer Rh-encapsulated nanoparticles (Rh-DENs) were immobilized on glassy carbon electrode (GCE) and their electrocatalytic activity towards hydrogen peroxide reduction was investigated using cyclic voltammetry and chronoamperometry. The Rh-DENs modified GCE showed excellent electrocatalytic activity for hydrogen peroxide reduction reactions. The steady-state cathodic current response of the modified electrode at −0.3 V (vs SCE) in phosphate buffer (pH 7.0) showed a linear response to hydrogen peroxide concentration ranging from 8 to 30 μM with a detection limit and sensitivity of 5 μM and 0.03103 × 10−6 A μM−1, respectively. 相似文献
3.
Homovanillic acid (HVA) is widely used for the detection and imaging of oxidative enzymes—peroxidase, glucose oxidase and xanthine oxidase, but antioxidant activity has not been determined so far with the use of HVA. We have developed a simple, sensitive and in-field spectrofluorimetric method for the determination of hydrogen peroxide (H2O2) scavenging activity. The assay is based on the oxidation of HVA to its fluorescent biphenyl dimer in the presence of H2O2 and peroxidase. The presence of substances with H2O2 scavenging activity prevents the oxidation of HVA by removing H2O2. The decrease in fluorescence intensity is proportional to the antioxidative (H2O2 scavenging) activity. The method was evaluated using Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid), BHA (3-t-butyl-4-hydroxyanisole) and ferulic, vanillic, caffeic, chlorogenic, protocatechuic and oxalic acids. Additionally, tea and herb infusions known for their antioxidant properties were evaluated. 相似文献
4.
5.
M. Y. El-Sheikh A. M. Habib A. K. Abou-Seif A. B. Zaki 《Journal of inclusion phenomena and macrocyclic chemistry》1986,4(4):359-367
The kinetics of the decomposition of hydrogen peroxide was studied in aqueous medium in the temperature range 25–40°C in the presence of Wofatit KPS-resin in the form of Cu(II)-ammine complex ions. The rate constant was deduced at various degrees of resin cross-linkage and different concentrations of hydrogen peroxide. The order of the decomposition reaction varied from first order to half order, i.e., the order of the reaction decreased with increasing the concentration of H2O2. The decomposition process was found to be a catalytic reaction which was controlled by the chemical reaction of H2O2 molecules with the active species inside the resin particles. The mechanism of the reaction can be summarized by the equation
in which the subsequent reactions of the probable active complex are discussed. 相似文献
6.
Amperometric biosensor with HRP immobilized on a sandwiched nano-Au / polymerized m-phenylenediamine film and ferrocene mediator 总被引:4,自引:0,他引:4
Li J Xiao LT Liu XM Zeng GM Huang GH Shen GL Yu RQ 《Analytical and bioanalytical chemistry》2003,376(6):902-907
An amperometric biosensor has been developed for the determination of H2O2 in plant samples. Horseradish peroxidase (HRP) is immobilized on a sandwiched nano-Au particle / m-phenylenediamine polymer film by glutaraldehyde cross-linking. The film is formulated on the carbon paste electrode (CPE) blended with ferrocene as an electron transfer mediator. On the low concentration range, the current response is related to the H2O2 concentration linearly from 0 to 8×10-6 M with a detection limit of 1.3×10-7 M. On a wider concentration range of 8×10-6 to 1.4×10-4 M, the reciprocal of current response is linearly related to the reciprocal of H2O2 concentration. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.0334 mM. The sensor has been tested by determining H2O2 concentration in plant leaf samples. 相似文献
7.
In this work, an amine-terminated poly (amidoamine) dendrimer containing Pt nanoparticles (PAMAM/Pt) nanocomposite was synthesized and a novel amperometric H(2)O(2) biosensor based on PAMAM/Pt and MWCNTs was developed. The resulting film of MWCNTs/PAMAM/Pt was characterized by transmission electron microscopy (TEM), linear sweep voltammetry (LSV) and amperometric i-t curve. It demonstrates excellent electrocatalytic responses toward the reduction of H(2)O(2) at -200 mV (vs.SCE) without HRP participation. Immobilized with glutamate oxidase (GlutaOx), an effective glutamate biosensor, was fabricated, and the in vivo detection for glutamate was realized combining with the on-line microdialysis system. The glutamate biosensor showed good linear range from 1.0 μM to 50.0 μM with the detection limit of 0.5 μM (S/N=3). The basal level of glutamate in the striatum of rat was detected continuously with this on-line system and was calculated to be 5.80±0.12 μM (n=3). This method was proved to be sensitive and selective and may be feasible in the further application of physiology and pathology. 相似文献
8.
Hydrogen peroxide (H2O2) in exhaled breath condensate (EBC) has been proposed as a marker for oxidative stress in the airways. The aim of the present study was to evaluate the measurement of H2O2 in EBC with or without use of a nose clip, and the influence of mouth rinsing, sampling time and storage.An elevated H2O2 level was seen during nasal breathing compared to mouth breathing with nose clip (3.4 pmol/s vs. 2.1 pmol/s, p = 0.02). Breathing through the mouth, using a nose clip, was therefore practiced in all experiments. The H2O2 levels were increased when mouth rinsing was performed using an acid buffer (1.4 pmol/s vs. 1.9 pmol/s, p = 0.03). 15 min sampling time decreased the H2O2 output by almost 50% compared with 2 min sampling time (1.2 vs. 0.6 pmol/s, p = 0.03). When samples were left unattended for 15 min no change in H2O2 concentration in the EBC was seen.We found no significant differences in H2O2 levels between samples stored for 4 weeks at − 80 °C and samples analysed directly; however, a significant decrease in the levels was seen for samples stored for 4 weeks at − 20 °C.In conclusion, the method of EBC collection and storage plays an important role in reducing variability within and between individuals. 相似文献
9.
L. -K. Wu K. -Y. Chen S. -Y. Cheng B. -S. Lee C. -M. Shu 《Journal of Thermal Analysis and Calorimetry》2008,93(1):115-120
Hydrogen peroxide (H2O2) is popularly employed as a reaction reagent in cleaning processes for the chemical industry and semiconductor plants. By
using differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), this study focused on the thermal decomposition
reaction of H2O2 mixed with sulfuric acid (H2SO4) with low (0.1, 0.5 and 1.0 N), and high concentrations of 96 mass%, respectively. Thermokinetic data, such as exothermic
onset temperature (T
0), heat of decomposition (ΔH
d), pressure rise rate (dP/dt), and self-heating rate (dT/dt), were obtained and assessed by the DSC and VSP2 experiments. From the thermal decomposition reaction on various concentrations
of H2SO4, the experimental data of T
0, ΔH, dP/dt, and dT/dt were obtained. Comparisons of the reactivity for H2O2 and H2O2 mixed with H2SO4 (lower and higher concentrations) were evaluated to corroborate the decomposition reaction in these systems. 相似文献
10.
Pt nanoparticles (PtNPs)/polypyrole (PPy) composites were successfully prepared through a facile one-pot interfacial polymerization of pyrrole by using H2PtCl6 as the oxidant for the first time. The as-prepared PPy was granular particles with particle size within a few hundred nanometers, on which PtNPs (1.7–3.5) nm were homogeneously dispersed. The PtNPs/PPy composites displayed excellent electrocatalytic activity toward redox of H2O2. The non-enzyme sensor constructed with PtNPs/PPy composites displayed good sensing ability toward H2O2 at ?0.1 V with a significantly high sensitivity of 6056 μAmM?1cm?2 and a low detection limit of 1.8 μM (S/N = 3). 相似文献
11.
K. Y. Chen C. M. Lin C. M. Shu C. S. Kao 《Journal of Thermal Analysis and Calorimetry》2006,85(1):87-89
Information about the kinetics and thermal
decomposition of hydrogen peroxide (H2O2)
has been required for safety reasons, due to its broad applications in many
chemical industries. To determine the inherent hazards during H2O2
manufacturing, transportation, disposal, usage, and so on, this study deliberately
selected various H2O2 concentrations
and analyzed them by differential scanning calorimetry (DSC). In addition,
thermokinetic parameters were not only established for each of these reactions,
but also aimed at comprehensive, kinetic models with various tests conducted
at different heating rates.
To build up a comprehensive kinetic
model, various tests were conducted by heating rates of 1, 2, 4, 10°C
min–1, respectively. According to dynamic
DSC tests, the experimental curves show that H2O2
decomposition has one exothermic peak and may start to decompose under 47–81°C.
The total heat of decomposition is about 192–1079 J g–1.
Not only can these results prevent accidents caused by H2O2
during storage and transportation, but also assess its inherent hazards and
thereby design procedures for emergency response while runaway reactions occurring. 相似文献
12.
A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant Km was estimated to be 2.21 mM. The detection of H2O2 concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration. 相似文献
13.
A novel piezoelelctric biosensor has been developed for cholera toxin (CT) detection based on the analyte-mediated surface-agglutination of ganglioside (GM1)-functionalized liposomes. To achieve a CT-specific agglutination at the surface, the gold electrode is modified by a GM1-functionalized supported lipid membrane via spontaneous spread of the liposomes on a self-assembled monolayer of a long-chain alkanethiol. In the presence of CT, the GM1-incorporated liposomes in assay medium will rapidly specifically agglutinate at the electrode surface through the binding of CT to GM1 on the electrode surface and the liposome interface. This results in an enormous mass loading on the piezoelelctric crystal as well as a significant increase of density and viscosity at the interface, thereby generating a decrease in frequency of the piezoelelctric crystal. The combination of mass loading with interfacial change in the surface-agglutination reaction allows the developed piezoelelctric biosensor to show substantial signal amplification in response to the analyte CT. The detection limit can be achieved as low as 25 ng mL−1 CT. This is the first demonstration on CT detection based on specific surface-agglutination of GM1-modified liposomes. The supported lipid layer based sensing interface can be prepared readily and renewably, making the developed technique especially useful for simple, reusable and sensitive determination of proteins. 相似文献
14.
A wide size range of SiO2 particles were synthesized and were used as enzyme immobilization carriers to fabricate glucose biosensors. The size of the particles was in the range of 17-520 nm. These biosensors could be operated under physiological conditions (0.1 M phosphate buffer, pH 7.2). Particle size could affect the performance of SiO2 modified glucose biosensors drastically. The smaller particles had higher performance. The smallest SiO2 modified biosensor could work well in the glucose concentration range of 0.02-10 mM with a correlation coefficient of 0.9993. Its sensitivity was 2.08 μA/mM and the detection limit was 1.5 μM glucose. 相似文献
15.
In this paper, we utilized the instinct peroxidase-like property of Fe3O4 magnetic nanoparticles (MNPs) to establish a new fluorometric method for determination of hydrogen peroxide and glucose. In the presence of Fe3O4 MNPs as peroxidase mimetic catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdTe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdTe QDs by H2O2 producer with Fe3O4 MNPs catalyst, which can be used to detect glucose. Under the optimal reaction conditions, a linear correlation was established between fluorescence intensity ratio I0/I and concentration of H2O2 from 1.8 × 10−7 to 9 × 10−4 mol/L with a detection limit of 1.8 × 10−8 mol/L. And a linear correlation was established between fluorescence intensity ratio I0/I and concentration of glucose from 1.6 × 10−6 to 1.6 × 10−4 mol/L with a detection limit of 1.0 × 10−6 mol/L. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results. 相似文献
16.
Xiangheng Niu Yanfang He Jianming Pan Xin Li Fengxian Qiu Yongsheng Yan Libo Shi Hongli Zhao Minbo Lan 《Analytica chimica acta》2016
Nanosized materials acting as substitutes of natural enzymes are currently attracting significant research due to their stable enzyme-like characteristics, but some flaws of these nanozymes, including their limited catalytic rate and efficiency, need to be remedied to enable their wider applications. In this work, we verify for the first time the catalytic behavior of uncapped nanobranch-based CuS clews as a peroxidase mimic. XRD, XPS, SEM, and TEM proofs demonstrate that high-purity CuS clews composed of intertwined wires with abundant nanodendrites outside are successfully produced via a facile one-pot hydrothermal synthesis approach, with thiourea as both the sulfion source and the structure-directing agent. The synthesized CuS can catalytically oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to trigger a visible color reaction with rapid response (reaching a maximum change within 5 min). The proposed CuS nanozyme exhibits preferable catalytic kinetics over natural horseradish peroxidase (HRP). This outstanding activity primarily results from the large surface area and rich sites exposed by the uncapped unique structure. Under optimized conditions, the fabricated sensing system provides linear absorbance (652 nm) changes in the H2O2 concentration range of 0.2˜130 μM, with a detection limit of as low as 63 nM. When coupled with glucose oxidase (GOD), the system is demonstrated to be capable of monitoring glucose in blood samples with excellent performance. 相似文献
17.
18.
The enzyme catalase, which catalyses the decomposition of hydrogen peroxide to oxygen and water, was immobilized in a membrane by entrapping it in polyacryl amide and contacted to a Clark-type oxygen electrode. With the resulting catalase biosensor it was possible to detect the substrate hydrogen peroxide and the inhibitors fluoride and cyanide in phosphate buffer.The sensor was integrated into a flow system. In the concentration range from 5–200 mg/l a linear dependence of the peak height on the hydrogen peroxide concentration was obtained. The average decrease in activity during 30 days of storage at 6 °C was 17%. Fluoride and cyanide could be determined by measuring the inhibition of the enzymatic reaction in the same flow system. The analysis was executed in three steps; namely determination of the original activity by pumping substrate solution, inhibition of the enzyme by pumping inhibitor solution, and determination of the activity after the inhibition.The decrease in activity correlated with the inhibitor concentration of the sample, but a linear dependence was not found. The inhibition of fluoride and cyanide was both reversible, the enzyme membrane could be reactivated completely by pumping substrate solution. The detection limit was 1 mg/l for fluoride and 1.5 mg/l for cyanide. 相似文献
19.
Biswanath Das Maddeboina Krishnaiah Boyapati Veeranjaneyulu Bommena Ravikanth 《Tetrahedron letters》2007,48(36):6286-6289
Ketones were efficiently converted into the corresponding gem-dihydroperoxides in high yields within a short period of time on treatment with aqueous H2O2 (50%) in the presence of a catalytic amount of CAN in acetonitrile at room temperature. 相似文献
20.
Lichen-based biosensor for the determination of benzene and 2-chlorophenol: microcalorimetric and amperometric investigations 总被引:1,自引:0,他引:1
Preliminary microcalorimetric studies have been performed to analyse the response of a whole epiphytic lichen tissue (Evernia prunastri) to 2-chlorophenol (2Cl-), a pollutant of oil mill waste-water, in order to evaluate whether the tissue might be used to assess the toxic characteristics of polluted waters. The obtained results (lichen viability expressed in hours, enthalpy variations for the 2Cl-/lichen interactions) were used to create a lichen-based biosensor that uses an amperometric oxygen electrode (a Clark electrode) as a transducer. The lichen catalyses aromatic ring cleavage (via pyrocatechase enzymes present in the lichen), and transforms aromatic substances like 2Cl- into muconic acid (C6H6O4). Following a full electroanalytical characterisation, the performance of the proposed lichen biosensor was compared to that of a biosensor based on Pseudomonas putida cells, which was originally constructed to monitor benzene in different matrices (water, air, petrol and oil) and was tested in our laboratory previously. 相似文献