首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用CO吸附微量量热法系统地研究了γ-Al2O3负载的Pt,Pd,Rh及Pt-Sn,Pt-Fe等贵金属催化剂,结果表明,Pt/γ-Al2O3,Pd/γ-Al2O3,Rh/γ-Al2O3贵金属催化剂上CO的微分吸附热能覆盖度的函数非常相似,其初始微分吸附热均约为120kJ/mol,随着CO覆盖度的增加,CO的微分吸附热逐渐降低,Pt/γ-Al2O3催化剂上CO吸附位数目对CO微分吸附热不同区间的分布非  相似文献   

2.
Pt/NM,Pd/NM催化剂上甲苯深度氧化反应动力学   总被引:4,自引:0,他引:4  
在氧气过量的条件下,考察了Pt/NM、Pd/NM催化剂上甲苯深度氧化反应动力学及反应活性。Pt/NM催化剂对甲苯的氢化活性高于Pd/NM,深度氧化反应服从反应物强吸附双分子反应Ltangmuir-Hinshelwood机理,其动力学方程为:相应的动力学参数,Pt/NM为:活化能△E=49.9kJ/mol,吸附热Q=-29.6kJ/mol;Pd/NM为:△E=94.2kJ/mol,Q=-19.1kJ/mol.  相似文献   

3.
杨斌  徐筠 《分子催化》1996,10(5):339-344
制备了聚N-乙烯基-2-吡咯烷酮PVP负载钯催化剂Pd/PVP及各种双金属催化剂(1-m)Pd-mM/PVP,并用于硝基芳烃的加氢还原中,其中Pd/PVP中加入H2PtCl6的效果最佳,碱的用量、溶剂和Pd、Pt的比例都对催化剂的活性有明显的影响,双金属催化剂0.80Pd-0.20Pt/PVP在温和条件下能高活性,高选择性地催化硝基芳烃还原,得到相应的芳胺。  相似文献   

4.
单层分散型Pd/Ni双金属催化剂的制备及其催化加氢性能   总被引:1,自引:0,他引:1  
通过置换反应制备了Pd/Ni双金属催化剂,利用X射线衍射、CO化学吸附和吸附H2的程序升温脱附对其进行了表征,并测定了该催化剂对环己烯、苯乙烯和丙酮气相加氢反应的催化性能.结果发现,在这种催化剂中Pd原子单层分散在金属Ni的表面,因而该催化剂表现出比浸渍法制备的相同Pd含量的Pd/Ni-im和Pd/-γAl2O3催化剂更高的催化加氢活性.  相似文献   

5.
研究了Pd-Pt/Al_2O_3催化剂对有机物的完全氧化活性和热稳定性。结果表明:Pd-Pt双组分催化剂的活性高于单组分催化剂。在实验范围内,催化剂的氧化活性与Pd、Pt负载量无关,热稳定性受Pd、Pt负载量影响而与Al_2O_3的表面积关系不大。高温处理引起催化剂表面Pd、Pt含量的降低是造成活性下降的主要原因。该催化剂对有机物具有很高的氧化活性,对氧的利用率很高,适用于工业有机废气的净化。  相似文献   

6.
周砚珠  江英彦 《催化学报》1981,2(3):233-235
一些高分子金属催化剂能够在常温常压下催化烯烃的加氢反应,具有很高的催化活性和选择性,而且容易回收.这些高分子催化剂所用的载体是以C—C键为主链的有机高聚物.Semikolenov等曾制备过以二氧化硅为载体的有机硅高聚物—金属络合物,即二氧化硅—聚-β-氰乙基硅氧烷—钯络合物作为烯烃的加氢催化剂,但是它的催化活性很低.我们曾经报道过二氧化硅—聚-γ-氰丙基硅氧烷—钯络合物,简写为[SiO_2—  相似文献   

7.
王伟银  林露  齐海峰  曹文秀  李志  陈少华  邹晓轩  陈铁红  唐南方  宋卫余  王爱琴  罗文豪 《催化学报》2021,42(5):824-834,中插29-中插32
卤代苯胺是化学工业中重要的中间体,主要用于制造药物、聚合物、染料等含氮化学品,用多相金属催化剂催化卤代硝基芳烃加氢制备卤代苯胺是一种高效,绿色和可持续发展的生产工艺.该过程需要选择性加氢硝基基团,同时避免卤素基团的脱卤副反应发生.然而,化学选择性加氢存在巨大的挑战,难点在于催化剂的精准设计,一方面要求具备对硝基基团合适的加氢能力,另一方面要阻止对卤素基团的脱卤副反应发生.基于此,研制高效多相金属催化剂用于卤代硝基芳烃选择性加氢制备卤代苯胺反应引起了高度关注.近年来,单原子金属催化剂受到越来越多的关注,并在卤代硝基芳烃选择性加氢制备卤代苯胺反应中显现出极大的潜力.本文通过在金属有机骨架材料MIL-53(Al)自组装的过程中将金属Rh原位嫁接其骨架结构中,继而通过限域热解的方法制备了Rh@Al2O3@C单原子催化剂,其在间氯硝基苯(m-CNB)加氢制间氯苯胺(m-CAN)反应中显现了高效催化选择性.球差校正高角度环形暗场模式的透射电镜,CO作为探针分子的红外光谱和X射线光电子能谱等结果发现,Rh是以单原子的形式均匀的分布在Al2O3上并被无定型碳包覆,且Rh化学价态呈正价.而27Al固体核磁共振与密度泛函理论计算的结果则进一步确定Al2O3@C载体中存在的五配位的Al物种(AlV)是锚定Rh单原子的主要位点,AlV的不饱和的配位结构可以有效地稳定Rh单原子,对形成Rh位点的单原子分散至关重要.在间氯硝基苯选择性加氢制间氯苯胺反应中,与等体积浸渍法制备的Rh/C和Rh/γ-Al2O3纳米催化剂相比,Rh@Al2O3@C单原子催化剂表现出优异催化性能:其在313 K,氢气压力为20 bar的温和条件下转换频率(TOF)高达2317 molm-CNB·molRh-1·h-1,优于已报道的多相金属催化剂,是目前的最高值.此外,该催化剂展现出极佳的稳定性能,经过五次循环后,该催化剂对m-CAN的选择性仍旧保持在98%左右.Rh@Al2O3@C单原子催化剂的优异催化性能源自于金属单原子结构的形成对于金属位点电子结构的有效调节,进而调控催化剂加氢性能并实现对加氢脱卤副反应的抑制;与此同时,Rh@Al2O3@C催化剂增进了酸位点的可及性,从而促进了其串联步骤中包含的脱水反应的发生,进而有效提高催化剂的反应活性.  相似文献   

8.
王伟银  林露  齐海峰  曹文秀  李志  陈少华  邹晓轩  陈铁红  唐南方  宋卫余  王爱琴  罗文豪 《催化学报》2021,42(5):824-834,中插29-中插32
卤代苯胺是化学工业中重要的中间体,主要用于制造药物、聚合物、染料等含氮化学品,用多相金属催化剂催化卤代硝基芳烃加氢制备卤代苯胺是一种高效,绿色和可持续发展的生产工艺.该过程需要选择性加氢硝基基团,同时避免卤素基团的脱卤副反应发生.然而,化学选择性加氢存在巨大的挑战,难点在于催化剂的精准设计,一方面要求具备对硝基基团合适的加氢能力,另一方面要阻止对卤素基团的脱卤副反应发生.基于此,研制高效多相金属催化剂用于卤代硝基芳烃选择性加氢制备卤代苯胺反应引起了高度关注.近年来,单原子金属催化剂受到越来越多的关注,并在卤代硝基芳烃选择性加氢制备卤代苯胺反应中显现出极大的潜力.本文通过在金属有机骨架材料MIL-53(Al)自组装的过程中将金属Rh原位嫁接其骨架结构中,继而通过限域热解的方法制备了Rh@Al2O3@C单原子催化剂,其在间氯硝基苯(m-CNB)加氢制间氯苯胺(m-CAN)反应中显现了高效催化选择性.球差校正高角度环形暗场模式的透射电镜,CO作为探针分子的红外光谱和X射线光电子能谱等结果发现,Rh是以单原子的形式均匀的分布在Al2O3上并被无定型碳包覆,且Rh化学价态呈正价.而27Al固体核磁共振与密度泛函理论计算的结果则进一步确定Al2O3@C载体中存在的五配位的Al物种(AlV)是锚定Rh单原子的主要位点,AlV的不饱和的配位结构可以有效地稳定Rh单原子,对形成Rh位点的单原子分散至关重要.在间氯硝基苯选择性加氢制间氯苯胺反应中,与等体积浸渍法制备的Rh/C和Rh/γ-Al2O3纳米催化剂相比,Rh@Al2O3@C单原子催化剂表现出优异催化性能:其在313 K,氢气压力为20 bar的温和条件下转换频率(TOF)高达2317 molm-CNB·molRh-1·h-1,优于已报道的多相金属催化剂,是目前的最高值.此外,该催化剂展现出极佳的稳定性能,经过五次循环后,该催化剂对m-CAN的选择性仍旧保持在98%左右.Rh@Al2O3@C单原子催化剂的优异催化性能源自于金属单原子结构的形成对于金属位点电子结构的有效调节,进而调控催化剂加氢性能并实现对加氢脱卤副反应的抑制;与此同时,Rh@Al2O3@C催化剂增进了酸位点的可及性,从而促进了其串联步骤中包含的脱水反应的发生,进而有效提高催化剂的反应活性.  相似文献   

9.
蒋和雁 《分子催化》2013,27(2):99-106
以金鸡纳碱衍生物作为手性修饰剂,研究了三苯基膦(tpp)稳定的1.0%Ru/γ-Al2O3催化剂催化芳香酮多相不对称加氢,考察了稳定剂种类、修饰剂种类、金属负载量、溶剂、碱添加剂种类等因素对不对称加氢反应的影响.结果表明,金鸡纳碱衍生物对1.0%Ru/γ-Al2O3/2tpp催化剂具有较好的修饰作用,在优化的反应条件下苯乙酮及其衍生物加氢反应的对映选择性达78%~98%,2-乙酰基噻吩加氢反应的对映选择性可达80%,2-乙酰基呋喃加氢反应的对映选择性可达75%.  相似文献   

10.
共聚物配位的钌催化剂及其催化加氢性能研究   总被引:1,自引:0,他引:1  
在工业中,催化加氢反应由于有重要的应用价值而得到广泛研究,通常这类催化剂以无机材料为活性金属的载体,如活性炭、二氧化硅及一些无机盐类等,有一些研究曾取得了很好的效果[1].然而,这类催化剂存在着普遍的弱点,如:负载于载体表面的活性金属极易形成金属簇从而使催化剂的活性中心减少;载体的结构(孔径、比表面、机械强度等)与性质(与选择反应体系的亲合性)不易改造而限制了上述催化剂的使用效果等.选择含配位原子的高聚物为配体,通过配位的方式使金属均匀地分布在载体的表面,是克服该类催化剂上述弱点的途径之一,有人在这方面进行过一系列的尝试[2~5]. 本文所述的钌配合物催化剂用2-乙烯吡啶(V)和甲基丙烯酸乙二醇双酯(M)的交联共聚物小球为配体,通过配位,还原制成PVMRu催化剂,并对其结构与催化加氢性能进行了研究.  相似文献   

11.
聚苯乙烯二苯基膦-钯络合物的合成及其加氢催化活性   总被引:1,自引:0,他引:1  
高分子金属络合物催化剂具有独特的优点,近十年来发展很快.有不少工作是关于含铑、钯、铂和钌等金属的高分子催化剂用于催化烯烃和炔烃等的加氢.据报道,由二氯化钯与线性聚苯乙烯二苯基膦或聚-γ-氨丙基硅氧烷反应制得的催化剂,对烯烃和炔烃的加氢反应具有很高的催化活性.该催化剂比Bailar制得的催化剂活性高.  相似文献   

12.
以系列L-氨基酸衍生物作为手性修饰剂,研究了三苯基膦(tpp)稳定的1.0%Ru/γ-Al2O3催化剂催化芳香酮多相不对称加氢,考察了稳定剂种类、修饰剂种类、金属负载量、底物浓度、温度、压力等因素对不对称加氢反应的影响。结果表明,L-氨基酸衍生物对1.0%Ru/γ-Al2O3/2tpp催化剂具有较好的修饰作用,在优化反应条件下芳香酮加氢反应的对映选择性达33%-81%,苯乙酮加氢反应的对映选择性可达70%。  相似文献   

13.
应用溶剂化金属原子浸渍(SMAI)法和普通浸渍(CI)法制备了金属含量相同的γ-Al2O3负载Ni-Ag双金属催化剂。研究了这些催化剂在甲苯和二丙酮醇加氢以及CO2甲醇化反应中的催化性质,结果表明与组成相同的普通浸渍法催化剂相比,在所有这些反应中SMAI催化剂都显示出较高的催化活性,这是因为SMAI催化剂具有较高的分散度和还原度(零价金属百分比)。  相似文献   

14.
按催化剂分类介绍了改性FT合成及与其相关反应的近期研究成果。即通过调制催化剂组成和反应条件,由合成气直接合成其他有价值的化工原料如醇、烯烃、芳香烃和石蜡等。分子筛,如AI-MCM-41和ZSM-5/磷铝分子筛等在FT及其相关反应中扮演着越来越重要的角色,但由于金属作为反应活性中心,所以金属催化剂如Fe,Co、Pd、Rh和Ni,双金属如Fe-Ir和Pt-Mo仍然是人们研究的重点。另外,一些新的反应方法和新的材料也被采用,如超临界方法及超微粒催化剂等。  相似文献   

15.
孟明  林培琰  伏义路 《催化学报》1996,17(3):189-192
催化剂采用等量浸渍法,先后将Co与贵金属相分浸于γ-Al2O3上,经500℃焙烧,450℃氢气还原剂(mco3o4/mAl2o3=0.08,m贵金属/m催化剂=1/1000),CO氧化活性的测定结果表明,贵金属Pt和Pd与Co之间具有的协同催化作用,而Rh与Co的协同作用较差,在Co-Pt/γ-Al2O3和Co-Pd/γ-Al2O3上,CO100%转化的温度较在Co/γ-Al2O3上下降约60℃,  相似文献   

16.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

17.
构建催化剂特别是在亚纳米尺度下分散的贵金属催化剂的构效关系是多相催化研究领域中的主要任务之一.我们采用与金属Pt具有强相互作用的MgAl2O4尖晶石作为载体,通过简单浸渍法制备了在纳米、亚纳米和单原子尺度上分散的Pt催化剂.首先利用X射线衍射和原子分辨的球差校正电镜,确定了Pt在MgAl2O4尖晶石载体表面上随负载量增大逐渐形成孤立的和相邻的单原子Pt,然后逐渐形成无定形Pt聚集体和小晶粒;然后利用电感耦合等离子体光谱和CO化学吸附测定了催化剂中Pt的含量和分散度;进一步通过测定CO在Pt表面吸附的红外光谱,区分了载体表面单原子和金属颗粒表面原子的CO吸附特征结构,并据此对不同结构的Pt原子进行了半定量估算.考察了具有不同Pt分散结构的Pt/MgAl2O4催化剂的催化苯甲醛选择性加氢能力,发现以载体表面Pt单原子物种为主的催化剂,可在较宽的温度区间内保持较高的部分加氢产物苯甲醇的选择性(60–150oC,苯甲醇选择性99.4–97.9%,甲苯选择性~0.4%),而以Pt纳米颗粒为主的催化剂上苯甲醇选择性降低显著,同时生成较多深度加氢产物甲苯(60–150oC,苯甲醇选择性99.0–93.1%,甲苯选择性0.7–5.0%).此外,我们测定了各催化剂在不同转化率(~20–90%)时催化剂加氢反应的质量比活性和转化频率(TOF),并在较低苯甲醛转化率(~20%)时,估算了不同结构Pt物种对苯甲醛加氢反应的本征活性,发现Pt纳米颗粒表面原子比MgAl2O4载体表面Pt单原子本征活性更高(4807 h–1 versus 3277 h–1).综上,Pt单原子催化剂具有贵金属原子利用率高,本征活性和加氢选择性高等优点;Pt纳米催化剂表面原子深度加氢能力强,加氢选择性较差,虽本征活性更高,但不足以补偿贵金属原子利用率降低带来的活性损失,Pt质量比活性显著低于单原子催化剂.此外,MgAl2O4尖晶石负载的单原子Pt催化剂也具有良好的催化反应循环稳定性,是一种较为理想的催化苯甲醛选择性加氢制苯甲醇催化剂.  相似文献   

18.
自Haruta与Hutchings于上世纪八十年代末发现金纳米催化剂优异的反应活性以来,科研人员对金催化的应用领域进行了广泛而深入地研究.对金催化科学和应用领域的研究一直在进行.大量的研究表明,金催化剂在各种选择性氧化反应中具有优异的催化性能(高活性和高选择性).然而,在催化加氢反应中,尽管金催化剂相比于铂族金属显示出优越的选择性,但是由于金催化剂选择性加氢反应的活性较差,使其在选择性催化加氢反应中的应用受到了极大的限制.研究表明,金催化剂较弱的活化氢气能力是其催化加氢反应活性低的主要原因.研究发现,氢气活化的活性中心可能是界面、负价金、低配位的金原子等.金催化剂具有明显的载体效应,金属-载体之间的相互作用能够显著地改变金催化剂的催化性能.Tauster等研究发现,铂族金属与还原性载体之间存在强相互作用,能够引发载体包覆金属表面,并且使得电子从载体向金属迁移,导致金属带负电.受金属-载体强相互作用(SMSI)效应的启发,本文探究了Au/TiO2催化剂中SMSI对金催化剂加氢性能的影响.在H2或O2气氛下高温焙烧Au/TiO2,获得一系列金催化剂(Au/TiO2-TA,T为焙烧温度(oC):300、400、500和600;A为气氛:H2或O2).对比在3-硝基苯乙烯(3-NS)选择性加氢反应中的活性发现,Au/TiO2-500H的TOF值是Au/TiO2-500O的3.3倍;动力学测试表明,Au/TiO2-500H和Au/TiO2-500O的反应表观活化能分别为79.5和105.1 kJ/mol.这表明两类催化剂催化活性中心的结构存在差异.X射线光电子能谱测试结果表明,Au/TiO2-H样品中Au带部分负电,而Au/TiO2-O中Au显示为金属态.HAADF-STEM和EELS显示,Au/TiO2-H中Au NPs的表面有TiOx物种,增加了Au-TiO2的界面.EPR结果表明,Au/TiO2-H中存在表面Ti3+物种,而Au/TiO2-O样品中则没有.为确认加氢反应的活性中心到底是界面还是负价金物种,本文探究了不同温度下氢气处理的Au/TiO2的结构与性能的关系,发现Au/TiO2-300H/400H/500H催化剂都显示出较好的催化3-NS加氢活性,而Au/TiO2-600H虽然具有更多的负价金物种,但是3-NS选择性加氢反应的活性反而降低,因此,负价金不是活性中心.这是因为不同温度处理的Au/TiO2-H样品中,SMSI的强弱不同,在300、400、500 oC下,SMSI能够增加Au-TiO2的界面长度,从而增强了3-NS加氢反应的活性;而温度达到600 oC,SMSI效应太强,Au NPs被包覆更密实,导致Au/TiO2-600H的3-NS选择性加氢反应的活性下降.密度泛函理论计算表明,Au/TiO2-H样品具有更低的H2解离活化能以及氢转移活化能.氢氘交换反应也进一步验证了SMSI有利于H2的活化.  相似文献   

19.
邵方君  姚子豪  高怡静  周强  包志康  庄桂林  钟兴  伍川  魏中哲  王建国 《催化学报》2021,42(7):1185-1194,中插50-中插65
饱和及不饱和N-杂环化合物是非常重要的药物中间体.由于它们在催化剂表面的吸附/脱附能力不同,设计具有合适电子结构和几何结构的催化剂用于饱和与不饱和N-杂环化合物的可逆转化具有很大挑战性.目前,负载型纳米金属催化剂通常被用于饱和N-杂环化合物的加氢反应或者不饱和杂环化合物的脱氢反应.然而反应过程中N-杂环化合物与纳米金属的强配位作用,不仅影响其他反应底物与活性位点的接触,而且导致催化剂的循环稳定性较差.在之前的研究中,钌(Ru)催化剂被用于喹啉化合物的选择加氢反应,但反应条件苛刻,循环稳定性差,不能实现杂环化合物的可逆转化.本文在Ru纳米颗粒的晶格中引入杂原子,诱导催化剂表现出不同的几何结构和电子性质,从而调节反应势垒和底物在催化剂表面的脱附能力以优化反应性能.本文以活性炭(AC)为载体,制备了Ru2P,RuO2,RuS2和Ru四种负载型催化剂,以喹啉和四氢喹啉为模型反应物,考察其催化性能.研究发现,Ru2P/AC可在温和条件下同时实现喹啉的加氢反应和四氢喹啉的无受体脱氢反应,且催化剂经过8次循环使用后,其转化率仍高达95%,选择性达到99%,远优于Ru/AC.密度泛函理论计算结果表明,Ru2P中的P原子使得两个相邻的Ru-Ru原子的间距从2.61?增加到2.9?.同时P对催化剂几何结构的变化使反应底物在催化剂表面的吸附行为发生改变,即喹啉和四氢喹啉分子都更容易在Ru2P的表面发生脱附,从而有利于反应进行.通过差分电荷分析,P原子掺杂会将Ru从零价状态调整为缺电子状态.随着P原子掺杂到Ru金属中,反应物表面的电荷大幅度下降,提高了加氢反应和脱氢反应中产物的扩散能力.进一步计算反应路径结果表明,Ru2P实现了N-杂环化合物可逆加氢/脱氢过程中反应与扩散之间的平衡,从而在加氢和脱氢反应中均表现出优异的催化性能.通过浸渍、热解制备的Ru2P/AC对一系列N-杂环化合物的加氢和脱氢反应均表现出优异的催化性能.这主要归因于P原子的掺入稀释了Ru-Ru团簇,引起的几何效应和电子效应的协同作用实现了N-杂环化合物加氢/脱氢过程反应与扩散的平衡,从而提高了可逆反应的催化性能.本文通过原子掺杂调控催化活性的本征结构,从而优化出具有平衡反应和产物扩散的优异催化剂.该合成策略具有直接通用的特点,易于拓展到其它复杂的反应体系当中.  相似文献   

20.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号