首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of biologically derived materials for the construction of materials with new functions is a crucial intersection of materials science and biotechnology, which is currently a topic of research interest. In this paper, we report on the use of cuttlebone-derived organic matrix (CDOM) as scaffold and reducer for the formation of silver nanoparticles (AgNPs). The experiment was carried out by simple immersing of CDOM in tollen’s reagent and incubating at 80 °C. UV–vis spectra and TEM were utilized to characterize the AgNPs and investigate their formation process. Results demonstrate that the size and distribution of AgNPs are influenced by the incubation time and protein component in CDOM. Furthermore, the AgNPs–CDOM composite was applied to catalyze the reduction of 4-nitrophenol in the presence of NaBH4, and it can be easily separated from the liquid-phase reaction system during the reusing cycles.  相似文献   

2.
The compound [Mo72Fe30O252(CH3COO)10{Mo2O7(H2O)}{H2Mo2O8(H2O)}3 (H2O)91]·ca. 140 H2O 3≡3a·ca. 140 H2O, an important educt for an unusual solid state reaction, can now be obtained easily by reacting (NH4)42[{MoV2O4(CH3COO)}30{(Mo)Mo5O21(H2O)6}12]·10 CH3COONH4·ca. 300 H2O 1 with FeCl3·6 H2O in water. Interestingly, the freshly precipitated crystals of 3 contain discrete spherical clusters of the type {MoVI72FeIII30} with as yet unprecedented 30×5 unpaired electrons (S=150/2 at room temperature). Upon drying 3, its cluster units 3a get covalently linked to form layers in a step by step solid state reaction, according to the scheme described below, resulting finally in the crystalline reaction product [H4Mo72Fe30O254(CH3COO)10{Mo2O7(H2O)}{H2Mo2O8(H2O)}3(H2O)87]·ca. 80 H2O 44a·ca. 80 H2O. The linking process at the Fe sites follows the well known inorganic condensation process leading to FeIII polycations in aqueous solution according to the scheme Fe(OH2)+(H2O)Fe Fe(OH)+(H2O)Fe Fe–O–Fe and thus is based on a type of crystal engineering with nanostructured spherical building blocks. This process does not allow chaotic characteristics in contrast to the mentioned polycation formation. Careful investigation leads to the identification of an intermediate 5 containing clusters 5a — with the same cluster composition as 3a and 4a — in the closest possible non-covalent contact. The related materials are of tremendous interest for magnetochemistry (nano-magneto-technology).
  相似文献   

3.
The linear isopiestic relation has been used, together with the fundamental Butler equations, to establish a new simple predictive equation for the surface tensions of the mixed ionic solutions. This newly proposed equation can provide the surface tensions of multicomponent solutions using only the data of the corresponding binary subsystems of equal water activity. No binary interaction parameters are required. The predictive capability of the equation has been tested by comparing with the experimental data of the surface tensions for the systems HCl–LiCl–H2O, HCl–NaClO4–H2O, HCl–CaCl2–H2O, HCl–SrCl2–H2O, HCl–BaCl2–H2O, LiCl–NaCl–H2O, LiCl–KCl–H2O, NaCl–KCl–H2O, KNO3–NH4NO3–H2O, and LiCl–NaCl–KCl–H2O at 298.15 K; KNO3–NH4Cl–H2O, KBr–Sr(NO3)2–H2O, NaNO3–Sr(NO3)2–H2O, NaNO3 –(NH4)2SO4–H2O, KNO3–Sr(NO3)2– H2O, NH4Cl–Sr(NO3)2–H2O, NH4Cl– (NH4)2SO4–H2O, KBr–KCl–H2O, KBr–KCl–NH4Cl–H2O, KBr–KNO3– Sr(NO3)2–H2O, KBr–NH4Cl–Sr(NO3)2–H2O, KNO3–NH4Cl–Sr(NO3)2–H2O, and NH4Cl–(NH4)2SO4–NaNO3–H2O at 291.15 K; and KBr–NaBr–H2O at temperatures from 283.15 to 308.15 K. The agreement is generally quite good.  相似文献   

4.
Ternary system: H2O–Fe(NO3)3–Co(NO3)2 isotherm: 30 °C. The H2O–Co(NO3)2 binary system has been investigated in the –28 to 50 °C temperature range. The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements. One isotherm is established at 30 °C, and the stable solid phases that appear are iron nitrate nonahydrate: Fe(NO3)3·9 H2O, iron nitrate hexahydrate: Fe(NO3)3·6 H2O, cobalt nitrate hexahydrate: Co(NO3)2·6 H2O, and cobalt nitrate trihydrate: Co(NO3)2·3 H2O. To cite this article: B. El Goundali et M. Kaddami, C. R. Chimie 9 (2006).  相似文献   

5.
This communication demonstrates the first work on anodic composite deposition of oxide nanocomposites. Rutile TiO2 nanoflowers with an average petal size of ca. 10 nm in diameter and 100 nm in length were synthesized from a TiCl3 solution purged with air at 25 °C for 12 days prior to the composite deposition. Hydrous ruthenium oxide (RuO2·xH2O) and TiO2 nanoflowers were composite-deposited onto Ti substrates for supercapacitors. In comparing with RuO2·xH2O deposits, RuO2·xH2O–TiO2 nanocomposites with a highly porous nature exhibit the weakly mass-dependent specific capacitance and high-power capacitive characteristics.  相似文献   

6.
1,4-Dimethylpiperazine mono-betaine (1-carboxymethyl-1,4-dimethylpiperazinium inner salt, MBPZ) crystallizes as monohydrate. The crystals are orthorhombic, space group Pccn. Two MBPZ molecules and two water molecules form a cyclic oligomer, (MBPZ·H2O)2. The O–H···O and O–H···N hydrogen bonds are of 2.769(1) and 2.902(1) Å, respectively. The dimers interact with the neighboring molecules through the C–H···O hydrogen bonds of 3.234(1) Å. The piperazine ring assumes a chair conformation with the N(4)–CH3 and N+(1)–CH2COO groups in the equatorial position and the N+(1)–CH3 group in the axial one. The FTIR spectrum is compared with that calculated by the B3LYP/6-31G(d,p) level of theory.  相似文献   

7.
A new synthesis of trisfluoroacetylactone (TFA) and hexafluoroacetylactone (HFA) Nd complexes: Nd(TFA)3 · 2H2O and Hd(HFA)3 · 2H2O is reported. The photoacoustic (PA) spectra in the 300–800 nm region of the compounds NdCl3 · 6H2O, Nd(TFA)3 · 2H2O and Nd(HFA)3 · 2H2O are reported. The PA absorption bands are assigned and their relative intensities represented by intensity branching vectors are calculated. The perturbation of the ligand on the energy levels of Nd3+ ion is discussed and a model of the relaxation process of Nd(HFA)3 · 2H2O is proposed based on its PA and absorption spectra.  相似文献   

8.
The photocatalytic activity composite films incorporating the Keggin-type polyoxometalates (POM) K6CoW12O40·16H2O and K3PW12O40·nH2O (MW12 (M = P, Co)) and [Cu(II)(1,8-dimethyl-1, 3, 6, 8, 10, 13-hexaazacycloteradecane)]2+(L) have been prepared by the layer-by-layer (LbL) self-assembly method. The experimental results show that the deposition process is linear and highly reproducible from layer to layer. Atomic force microscopy (AFM) images of the L/MW12 composite films indicate that the film surface is relatively uniform and smooth. In addition, the films show high photocatalytic activity to the degradation of organic dye model (methyl orange (MO)), attributed to the formation of an O → W charge-transfer excited state at W–O–W bridge bond, resulting in generating highly reactive holes and electrons; The photocatalytic efficiency of the films have little change after several times of photocatalytic cycle, indicating that the composite films are stable, reused and recovered.  相似文献   

9.
We report the calculations of exchange magnetic constants in a series of vanadium phosphorus oxides for which structural and magneto-chemical data are available. Four different types of dimers have been extracted from the crystal lattices in all solids studied. On the basis of a combined density functional theory broken symmetry approach, our calculations on molecular models allow us to define schemes of magnetic interactions. The largest absolute magnetic interaction is provided by the double O–P–O and di-μ-oxo bridges, suggestive of an alternating dimer chain model and an isolated dimer one for the VO(HPO4)·0.5H2O and α-VO(HPO4)·2H2O phases, respectively. Conversely, VO(HPO4)·4H2O is consistent with a bi-dimensional magnetic pattern whereas VO(H2PO4)2 and α-VO(PO3)2 with three-dimensional magnetic schemes. The use of dimer models has been justified by the analysis of higher-nuclearity clusters.  相似文献   

10.
A novel thioantimonate(III) [(CH3NH3)1.03K2.97]Sb12S20·1.34H2O was synthesized hydrothermally. It crystallizes in space groupP , witha=11.9939(7) Å,b=12.8790(8) Å,c=14.9695(9) Å,α=100.033(1)°,β=99.691(1)°,γ=108.582(1)°,V=2095.3(2) Å3, andZ=2. The structure is determined from single crystal X-ray diffraction data collected at room temperature and refined toR(F)=0.037. In the crystal structure, each Sb(III) atoms has short bonds (2.37–2.58 Å) to three S atoms. The pyramidal [SbS3] groups share common S atoms forming two types of centrosymmetric [Sb12S20] rings with the same topology. These rings are interconnected by weaker Sb–S bonds (2.92–3.29 Å) into 2-dimensional layers. Adjacent layers are parallel with K+and CH3NH+3ions and H2O molecules located between them. Variation of bond valence sums calculated for the Sb(III) cations is found to be correlated with the coordination geometry. This is interpreted as due to the stereochemical activity of their lone electron pairs.  相似文献   

11.
The formation of active chromium hydroxide, Cr(OH)3·3H2O, was studied through potentiometric titrations and turbidimetric measurements. UV-Vis and IR spectroscopies were also employed to characterize the synthesized solid. The rapid addition of NaOH solution to aqueous chrome alum (KCr(SO4)2·12H2O) solutions caused the immediate precipitation of the active material. Only monomeric Cr(III) species seemed to be participating in the precipitation process; neither chromium polymers nor complexes with anions (SO2−4, Cl, NO3, ClO4) influenced the fast formation of Cr(OH)3·3H2O. Titration studies allowed the determination of several hydrolysis and precipitation constants for Cr(III). Nevertheless, they cannot be used for the estimate of Cr(OH)03formation constant.  相似文献   

12.
Three thiophene-2,5-dicarboxylic acid (H2tdc) complexes of copper(II) with 2-aminomethylpyridine (ampy), {[Cu2(μ-tdc)2(ampy)2]·2DMF}n (1), ethylenediamine (en), trans-[Cu(H2O)2(en)2](tdc) (2) and 4-methylimidazole (4-meim), trans-[Cu(H2O)2(4-meim)4](tdc)·4H2O (3) have been synthesized and characterized by spectral (IR, UV–Vis), thermal analyses and X-ray diffraction techniques. In 1, thiophene-2,5-dicarboxylate acts as a bridging bis(bidentate) ligand through four carboxylate oxygen atoms forming a 1-D zigzag polymeric chain, whereas in 2 and 3 the tdc dianion behaves as a counter ion. In all cases, the Cu(II) centers have an octahedral coordination geometry. Three-dimensional frameworks are constructed though hydrogen bonding and/or C–H···π interactions in the three complexes.  相似文献   

13.
Infrared spectra of the title compounds with kröhnkite-type infinite octahedral–tetrahedral chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd), are presented in the regions of the uncoupled O–D stretching modes of matrix-isolated HDO molecules (isotopically dilute samples) and water librations. The strengths of the hydrogen bonds are discussed in terms of the respective OwO bond distances, the Me–water interactions (synergetic effect), the proton acceptor capability of the chromate oxygen atoms as deduced from Brown's bond valence sum of the oxygen atoms. The spectroscopic experiments reveal that hydrogen bonds of medium strength are formed in the chromates. The hydrogen bond strengths decrease in the order Cd > Zn > Ni > Co in agreement with the decreasing covalency of the respective Me–OH2 bonds in the same order, i.e. decreasing acidity of the water molecules. The infrared band positions corresponding to the water librations confirm the claim that the hydrogen bonds in K2Cd(CrO4)2·2H2O are stronger than those formed in K2Mg(CrO4)2·2H2O on one hand, and on the other—the hydrogen bonds in K2Ni(CrO4)2·2H2O are stronger than those in K2Co(CrO4)2·2H2O.  相似文献   

14.
1-Alkyl-2-{(o-thioalkyl)phenylazo}imidazole (SRaaiNR/, 1) reacts with Co(ClO4)2·6H2O to form [Co(SRaaiNR/)2](ClO4)2 (2). The single crystal X-ray structure of one of the complexes of 2 shows a tridentate chelation N(imidazole), N(azo), S(thioether) system. In the structure one of ClO4 anions shows disorder and forms an (imidazole)C–H···O(ClO3) interaction leading to a 1-D chain. Co(OAc)2.4H2O and SRaaiNR/ react in the presence of NH4SCN (1:1:2 mole ratio) in methanol and the complex [Co(SRaaiNR/)2(SCN)2] (3) has been separated. The single crystal X-ray structure determination has established the structure of the complexes in which the ligand SRaaiNR/ acts in a bidentate N(imidazole), N(azo) chelation mode. A cyclic voltammogram shows a Co(III)/Co(II) oxidative response at 0.6–0.8 V and azo reductions. DFT computation using optimized geometry support the electronic spectral and redox properties of the complexes.  相似文献   

15.
The reaction of Gd(III) with asymmetric tetramine 1,4,7,11-tetraazaundecane (2,2,3-tet, L1) ligand has been studied via NMR spectroscopy. The ligand proton longitudinal relaxation rates (R1) have been used to estimate the distances of these protons from the Gd(III) center, in Gd(III)–L1 reaction solutions, in H2O/D2O 5/1 mixtures.Two Gd(III) complexes [Gd(III)(L1)(NH3)(H2O)4](CH3COO)3·2H2O (1) and [Gd(III)(L1)(NH3)(H2O)2]Cl3·EtOH (2) have been isolated and characterized by elemental analyses, TGA, IR, NMR and relaxometry measurements. The NMR relaxation measurements of 2 in aqueous solutions have been performed, under various temperature or concentration conditions, and compared with those of the commercial contrast agents Gd(III)–DTPA and Gd(III)–DTPA-BMA. It has also been studied the influence of (i) the Gd(III) inner-sphere water molecule number (q) alteration and (ii) the steric constraint enhancement on the metal site, over the relaxation rate values of the parent aqueous solution of Gd(III)–2,2,3-tet, and of the aqueous solutions of 2.  相似文献   

16.
Using the principle of crystal engineering, three new silver metal–organic coordination polymers, [Ag2(L1)2(L2)]·2H2O (1), [Ag2(L1)2(L3)]·H2O (2), [Ag2(L1)2(L4)]·2H2O (3) (L1 = 2-aminopyrimidine, L2 = oxalate anion, L3 = glutarate anion and L4 = 1,4-naphthalenedicarboxylate anion) have been synthesized by solution phase reactions of silver nitrate with various dicarboxylic acids and cooperative heterocyclic 2-aminopyrimidine ligand under the ammoniacal conditions. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. In complex 1, L1 ligands are coordinated to Ag(I) metal centers in rare tridentate fashions, forming one-dimensional (1-D) ladder-like structure, which is interlinked by L2 anions to generate 2-D pleated molecular sheet. Complex 2 displays an interesting two-dimensional (2-D) tongue-and-groove structure containing a new kind of “T-shaped” unit. Meanwhile, each of 2-D bilayers is interlocked by four adjacent identical motifs to form three-dimensional (3-D) 5-fold interpenetrating conformation with weak Ag···Ag interactions. In complex 3, L1 ligands are coordinated to the Ag(I) ions to form 1-D polymeric chain. And L4 anions, acting as bridging linkers through corresponding μ2-carboxylates, link a pair of Ag(I) atoms from adjacent chains to yield 3-D supramolecular network. The structures of complexes 13 which span from 2-D to 3-D networks suggest that dicarboxylate anions play important role in the formation of such coordination architectures.  相似文献   

17.
18.
Three new organic–inorganic hybrid compounds constructed from Keggin-type polyanions and transition metal complexes, [Mn(2,2′-bipy)3]1.5[BW12O40Mn(2,2′-bipy)2(H2O)]·0.25H2O (1), [Fe(2,2′-bipy)3]1.5[BW12O40Fe(2,2′-bipy)2(H2O)]·0.5H2O (2) and [Cu2(phen)2(OH)2]2H[Cu(H2O)2{BW12O40Cu0.75(phen)(H2O)}2]·1.5H2O (3), have been hydrothermally synthesized and characterized by elemental analyses, IR, TGA and single-crystal X-ray diffraction. Compounds 1 and 2 are isostructural and both exhibit monosupporting polyoxometalate cluster structure, each of which contains a [BW12O40]5− cluster decorated by one transition metal complex. Compound 3 contains a bisupporting polyoxometalate cluster anion where two {Cu0.75(phen)(H2O)}0.75+ fragments are supported on the polyoxometalate dimer {Cu(H2O)2(BW12O40)2}8−, this represents the first bisupporting polyoxometalate cluster based on a Keggin-type polyoxometalate dimer, which are further packed together via π–π stacking contacts into an extended 1-D chain.  相似文献   

19.
The geometries of the ClNH3, ClH2O, FNH3 and FH2O clusters are optimized using the coupled cluster method. The four lowest ionization potentials are then calculated, leading to the ground and low excited states of the neutral species. The first three IPs describe ionization from the externalp state of the halogen atom, whereas the fourth corresponds to ionization from the NH3 or H2O moiety, leading to charge transfer complexes. These complexes were recently observed in the photoelectron spectrum of ClNH3, in full accord with our calculations.Supported in part by the U.S.-Israel Binational Science Foundation  相似文献   

20.
The title species are synthesized in the gas phase and their unimolecular chemistry is determined by a combination of tandem mass spectrometry methods. Dissociative electron ionization of the α-amino acids valine, leucine, isoleucine, or serine produces the α-glycyl cation, H2NCH+COOH, in high yield and purity. At threshold, this ion dissociates by CO loss to form the proton-bound complex HCNH+OH2 via a tight 1,4-H migration that is associated with a high reverse barrier. After collisional activation, additional channels open, most notably the formation of the complementary and structure-characteristic fragments H2NCH (ionized aminocarbene) and +COOH and the elimination of OH·. Charge reversal and neutralization–reionization of H2NCH+COOH conclusively show that α-glycyl anion, H2NCHCOOH, and α-glycyl radical, H2NCH·COOH, are stable species residing in deep potential energy wells. In the microsecond time window of the experiments, a small fraction of the α-glycyl radical decomposes by sequential elimination of H2O and CO. The α-glycyl anions arising by charge reversal of the cation or reionization of the radical partly undergo rearrangement losses of H2 and H2O, direct cleavages to COOH, OH, and H2N, and consecutive fragmentation of these primary product anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号