首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let G =  (V, E) be a finite loopless graph and let (A, +) be an abelian group with identity 0. Then an A-magic labeling of G is a function ${\phi}$ from E into A ? {0} such that for some ${a \in A, \sum_{e \in E(v)} \phi(e) = a}$ for every ${v \in V}$ , where E(v) is the set of edges incident to v. If ${\phi}$ exists such that a =  0, then G is zero-sum A-magic. Let zim(G) denote the subset of ${\mathbb{N}}$ (the positive integers) such that ${1 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}}$ -magic and ${k \geq 2 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}_k}$ -magic. We establish that if G is 3-regular, then ${zim(G) = \mathbb{N} - \{2\}}$ or ${\mathbb{N} - \{2,4\}.}$   相似文献   

2.
A broadcast on a nontrivial connected graph G is a function ${f:V \longrightarrow \{0, \ldots,\operatorname{diam}(G)\}}$ such that for every vertex ${v \in V(G)}$ , ${f(v) \leq e(v)}$ , where ${\operatorname{diam}(G)}$ denotes the diameter of G and e(v) denotes the eccentricity of vertex v. The broadcast independence number is the maximum value of ${\sum_{v \in V} f(v)}$ over all broadcasts f that satisfy ${d(u,v) > \max \{f(u), f(v)\}}$ for every pair of distinct vertices u, v with positive values. We determine this invariant for grid graphs ${G_{m,n} = P_m \square P_n}$ , where ${2 \leq m \leq n}$ and □ denotes the Cartesian product. We hereby answer one of the open problems raised by Dunbar et al. in (Discrete Appl Math 154:59–75, 2006).  相似文献   

3.
A proper t-coloring of a graph G is a mapping ${\varphi: V(G) \rightarrow [1, t]}$ such that ${\varphi(u) \neq \varphi(v)}$ if u and v are adjacent vertices, where t is a positive integer. The chromatic number of a graph G, denoted by ${\chi(G)}$ , is the minimum number of colors required in any proper coloring of G. A linear t-coloring of a graph is a proper t-coloring such that the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number of a graph G, denoted by ${lc(G)}$ , is the minimum t such that G has a linear t-coloring. In this paper, the linear t-colorings of Sierpiński-like graphs S(n, k), ${S^+(n, k)}$ and ${S^{++}(n, k)}$ are studied. It is obtained that ${lc(S(n, k))= \chi (S(n, k)) = k}$ for any positive integers n and k, ${lc(S^+(n, k)) = \chi(S^+(n, k)) = k}$ and ${lc(S^{++}(n, k)) = \chi(S^{++}(n, k)) = k}$ for any positive integers ${n \geq 2}$ and ${k \geq 3}$ . Furthermore, we have determined the number of paths and the length of each path in the subgraph induced by the union of any two color classes completely.  相似文献   

4.
A group distance magic labeling or a ${\mathcal{G}}$ -distance magic labeling of a graph G =  (V, E) with ${|V | = n}$ is a bijection f from V to an Abelian group ${\mathcal{G}}$ of order n such that the weight ${w(x) = \sum_{y\in N_G(x)}f(y)}$ of every vertex ${x \in V}$ is equal to the same element ${\mu \in \mathcal{G}}$ , called the magic constant. In this paper we will show that if G is a graph of order n =  2 p (2k + 1) for some natural numbers p, k such that ${\deg(v)\equiv c \mod {2^{p+1}}}$ for some constant c for any ${v \in V(G)}$ , then there exists a ${\mathcal{G}}$ -distance magic labeling for any Abelian group ${\mathcal{G}}$ of order 4n for the composition G[C 4]. Moreover we prove that if ${\mathcal{G}}$ is an arbitrary Abelian group of order 4n such that ${\mathcal{G} \cong \mathbb{Z}_2 \times\mathbb{Z}_2 \times \mathcal{A}}$ for some Abelian group ${\mathcal{A}}$ of order n, then there exists a ${\mathcal{G}}$ -distance magic labeling for any graph G[C 4], where G is a graph of order n and n is an arbitrary natural number.  相似文献   

5.
A graceful labeling of a graph G with q edges is an injective assignment of labels from {0, 1, . . . , q} to the vertices of G so that when each edge is assigned the absolute value of the difference of the vertex labels it connects, the resulting edge labels are distinct. A labeling of the first kind for coronas ${C_n \odot K_1}$ occurs when vertex labels 0 and q = 2n are assigned to adjacent vertices of the n-gon. A labeling of the second kind occurs when q = 2n is assigned to a pendant vertex. Previous research has shown that all coronas ${C_n \odot K_1}$ have a graceful labeling of the second kind. In this paper we show that all coronas ${C_n \odot K_1}$ with ${n \equiv 3, 4\, {\rm (mod\, 8)}}$ also have a graceful labeling of the first kind.  相似文献   

6.
We study the sets $\mathcal{T}_{v}=\{m \in\{1,2,\ldots\}: \mbox{there is a convex polygon in }\mathbb{R}^{2}\mbox{ that has }v\mbox{ vertices and can be tiled with $m$ congruent equilateral triangles}\}$ , v=3,4,5,6. $\mathcal{T}_{3}$ , $\mathcal{T}_{4}$ , and $\mathcal{T}_{6}$ can be quoted completely. The complement $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ of $\mathcal{T}_{5}$ turns out to be a subset of Euler’s numeri idonei. As a consequence, $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ can be characterized with up to two exceptions, and a complete characterization is given under the assumption of the Generalized Riemann Hypothesis.  相似文献   

7.
We consider a variant of the Cops and Robber game, in which the robber has unbounded speed, i.e., can take any path from her vertex in her turn, but she is not allowed to pass through a vertex occupied by a cop. Let ${c_{\infty}(G)}$ denote the number of cops needed to capture the robber in a graph G in this variant. We characterize graphs G with c ??(G) =? 1, and give an ${O( \mid V(G)\mid^2)}$ algorithm for their detection. We prove a lower bound for c ?? of expander graphs, and use it to prove three things. The first is that if ${np \geq 4.2 {\rm log}n}$ then the random graph ${G= \mathcal{G}(n, p)}$ asymptotically almost surely has ${\eta_{1}/p \leq \eta_{2}{\rm log}(np)/p}$ , for suitable positive constants ${\eta_{1}}$ and ${\eta_{2}}$ . The second is that a fixed-degree random regular graph G with n vertices asymptotically almost surely has ${c_{\infty}(G) = \Theta(n)}$ . The third is that if G is a Cartesian product of m paths, then ${n/4km^2 \leq c_{\infty}(G) \leq n/k}$ , where ${n = \mid V(G)\mid}$ and k is the number of vertices of the longest path.  相似文献   

8.
Let S be a subgroup of a group G. A set ${\Pi= \{H_1, \ldots , H_n\}}$ of subgroups ${H_i (i = 1, \ldots ,n)}$ with ${G=\cup_{H_i\in\Pi}H_i}$ is said to be an equal quasi-partition of G if ${H_i\cap H_j\cong S}$ and ${|H_i|=|H_j|}$ for all ${H_i, H_j\in\Pi}$ with ${i\ne j}$ . In this paper we investigate finite p-groups such that a subset of their maximal subgroups form an equal quasi-partition.  相似文献   

9.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

10.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

11.
12.
We prove that, for each simple graph G whose set of vertices is countably infinite, there is a family ${\varvec{\mathcal{R}}(\varvec{G})}$ of the cardinality of the continuum of graphs such that (1) each graph ${\varvec{H} \in \varvec{\mathcal{R}}(\varvec{G})}$ is isomorphic to G, all vertices of H are points of the Euclidean space E 3, all edges of H are straight line segments (the ends of each edge are the vertices joined by it), the intersection of any two edges of H is either their common vertex or empty, and any isolated vertex of H does not belong to any edge of H; (2) all sets ${\varvec{\mathcal{B}}(\varvec{H})}$ ( ${\varvec{H} \in \varvec{\mathcal{R}}(\varvec{G})}$ ), where ${\varvec{\mathcal{B}}(\varvec{H})\subset \mathbf{E}^3}$ is the union of all vertices and all edges of H, are pairwise not homeomorphic; moreover, for any graphs ${\varvec{H}_1 \in \varvec{\mathcal{R}}(\varvec{G})}$ and ${\varvec{H}_2 \in \varvec{\mathcal{R}}(\varvec{G})}$ , ${\varvec{H}_1 \ne \varvec{H}_2}$ , and for any finite subsets ${\varvec{S}_i \subset \varvec{\mathcal{B}}(\varvec{H}_i)}$ (i = 1, 2), the sets ${\varvec{\mathcal{B}}(\varvec{H}_1){\setminus} \varvec{S}_1}$ and ${\varvec{\mathcal{B}}(\varvec{H}_2){\setminus} \varvec{S}_2}$ are not homeomorphic.  相似文献   

13.
Let $ \mathfrak{g} $ be the complex semisimple Lie algebra associated to a complex semisimple algebraic group G, $ \mathfrak{b} $ a Borel subalgebra of $ \mathfrak{g} $ , $ \mathfrak{h}\subset \mathfrak{b} $ the Cartan sublagebra, and N ? G the unipotent subgroup corresponding to the nilradical $ \mathfrak{n}\subset \mathfrak{b} $ . We show that the explicit formula for the extremal projection operator for $ \mathfrak{g} $ obtained by Asherova, Smirnov, and Tolstoy and similar formulas for Zhelobenko operators are related to the existence of a birational equivalence $ N\times \mathfrak{h}\to \mathfrak{b} $ given by the restriction of the adjoint action. Simple geometric proofs of formulas for the “classical” counterparts of the extremal projection operator and of Zhelobenko operators are also obtained.  相似文献   

14.
Let G be a simple algebraic group defined over ?. Let e be a nilpotent element in $ \mathfrak{g} $ = Lie(G) and denote by U ( $ \mathfrak{g} $ , e) the finite W-algebra associated with the pair ( $ \mathfrak{g} $ , e). It is known that the component group Γ of the centraliser of e in G acts on the set ? of all one-dimensional representations of U ( $ \mathfrak{g} $ , e). In this paper we prove that the fixed point set ?Γ is non-empty. As a corollary, all finite W-algebras associated with $ \mathfrak{g} $ admit one-dimensional representations. In the case of rigid nilpotent elements in exceptional Lie algebras we find irreducible highest weight $ \mathfrak{g} $ -modules whose annihilators in U ( $ \mathfrak{g} $ ) come from one-dimensional representations of U ( $ \mathfrak{g} $ , e) via Skryabin’s equivalence. As a consequence, we show that for any nilpotent orbit $ \mathcal{O} $ in $ \mathfrak{g} $ there exists a multiplicity-free (and hence completely prime) primitive ideal of U ( $ \mathfrak{g} $ ) whose associated variety equals the Zariski closure of $ \mathcal{O} $ in $ \mathfrak{g} $ .  相似文献   

15.
Let ${\mathcal{D}}$ be a nontrivial triplane, and G be a subgroup of the full automorphism group of ${\mathcal{D}}$ . In this paper we prove that if ${\mathcal{D}}$ is a triplane, ${G\leq Aut(\mathcal{D})}$ is flag-transitive, point-primitive and Soc(G) is an alternating group, then ${\mathcal{D}}$ is the projective space PG 2(3, 2), and ${G\cong A_7}$ with the point stabiliser ${G_x\cong PSL_3(2)}$ .  相似文献   

16.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

17.
Let G be a graph and A an abelian group with the identity element 0 and ${|A| \geq 4}$ . Let D be an orientation of G. The boundary of a function ${f: E(G) \rightarrow A}$ is the function ${\partial f: V(G) \rightarrow A}$ given by ${\partial f(v) = \sum_{e \in E^+(v)}f(e) - \sum_{e \in E^-(v)}f(e)}$ , where ${v \in V(G), E^+(v)}$ is the set of edges with tail at v and ${E^-(v)}$ is the set of edges with head at v. A graph G is A-connected if for every b: V(G) → A with ${\sum_{v \in V(G)} b(v) = 0}$ , there is a function ${f: E(G) \mapsto A-\{0\}}$ such that ${\partial f = b}$ . A graph G is A-reduced to G′ if G′ can be obtained from G by contracting A-connected subgraphs until no such subgraph left. Denote by ${\kappa^{\prime}(G)}$ and α(G) the edge connectivity and the independent number of G, respectively. In this paper, we prove that for a 2-edge-connected simple graph G, if ${\kappa^{\prime}(G) \geq \alpha(G)-1}$ , then G is A-connected or G can be A-reduced to one of the five specified graphs or G is one of the 13 specified graphs.  相似文献   

18.
For a broad class of Fréchet-Lie supergroups $ \mathcal{G} $ , we prove that there exists a correspondence between positive definite smooth (resp., analytic) superfunctions on $ \mathcal{G} $ and matrix coefficients of smooth (resp., analytic) unitary representations of the Harish-Chandra pair (G, $ \mathfrak{g} $ ) associated to $ \mathcal{G} $ . As an application, we prove that a smooth positive definite superfunction on $ \mathcal{G} $ is analytic if and only if it restricts to an analytic function on the underlying manifold of $ \mathcal{G} $ . When the underlying manifold of $ \mathcal{G} $ is 1-connected we obtain a necessary and sufficient condition for a linear functional on the universal enveloping algebra U( $ {{\mathfrak{g}}_{\mathbb{C}}} $ ) to correspond to a matrix coefficient of a unitary representation of (G, $ \mathfrak{g} $ ). The class of Lie supergroups for which the aforementioned results hold is characterised by a condition on the convergence of the Trotter product formula. This condition is strictly weaker than assuming that the underlying Lie group of $ \mathcal{G} $ is a locally exponential Fréchet-Lie group. In particular, our results apply to examples of interest in representation theory such as mapping supergroups and diffeomorphism supergroups.  相似文献   

19.
Let ${\pi=(d_{1},d_{2},\ldots,d_{n})}$ and ${\pi'=(d'_{1},d'_{2},\ldots,d'_{n})}$ be two non-increasing degree sequences. We say ${\pi}$ is majorizated by ${\pi'}$ , denoted by ${\pi \vartriangleleft \pi'}$ , if and only if ${\pi\neq \pi'}$ , ${\sum_{i=1}^{n}d_{i}=\sum_{i=1}^{n}d'_{i}}$ , and ${\sum_{i=1}^{j}d_{i}\leq\sum_{i=1}^{j}d'_{i}}$ for all ${j=1,2,\ldots,n}$ . If there exists one connected graph G with ${\pi}$ as its degree sequence and ${c=(\sum_{i=1}^{n}d_{i})/2-n+1}$ , then G is called a c-cyclic graph and ${\pi}$ is called a c-cyclic degree sequence. Suppose ${\pi}$ is a non-increasing c-cyclic degree sequence and ${\pi'}$ is a non-increasing graphic degree sequence, if ${\pi \vartriangleleft \pi'}$ and there exists some t ${(2\leq t\leq n)}$ such that ${d'_{t}\geq c+1}$ and ${d_{i}=d'_{i}}$ for all ${t+1\leq i\leq n}$ , then the majorization ${\pi \vartriangleleft \pi'}$ is called a normal majorization. Let μ(G) be the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix of G. We use C π to denote the class of connected graphs with degree sequence π. If ${G \in C_{\pi}}$ and ${\mu(G)\geq \mu(G')}$ for any other ${G'\in C_{\pi}}$ , then we say G has greatest signless Laplacian radius in C π . In this paper, we prove that: Let π and π′ be two different non-increasing c-cyclic (c ≥ 0) degree sequences, G and G′ be the connected c-cyclic graphs with greatest signless Laplacian spectral radii in C π and C π', respectively. If ${\pi \vartriangleleft \pi'}$ and it is a normal majorization, then ${\mu(G) < \mu(G')}$ . This result extends the main result of Zhang (Discrete Math 308:3143–3150, 2008).  相似文献   

20.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号