首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The excitation of 3D levels of strontium atom by slow monoenergetic electrons has been studied experimentally. Thirty six excitation cross-sections were measured at 30-eV electron energy. Optical excitation functions for most of the transitions were recorded in the 0–200-eV electron-energy range. The excitation cross-section as a function of the principal quantum number has been found to correspond to a power law for all 3D series.  相似文献   

2.
In this paper thermal entanglement between two identical two-level atoms within a bichromatic cavity including Kerr nonlinear coupler is investigated. In this study, besides atom–field interaction, the field–field (via linear and Kerr-type couplings) and atomic dipole–dipole interactions are also included. It is also assumed that the cavity is held at a temperature TT, so that all atom–photon states with probabilities defined by Boltzmann factor are present. Using a canonical transformation, the presented model is converted to a generalized form of Jaynes–Cummings model. After introducing Casimir operators of the system, it is shown that the Hamiltonian representation is block-diagonal. Diagonalizing each block, the thermal (Gibb’s) density matrix, written in the bases of total Hamiltonian, is obtained. The reduced atomic density matrix and consequently the concurrence, as a measure of entanglement, are obtained by partial tracing of thermal density matrix over the bichromatic photonic states. The concurrence vanishes at zero temperature, indicating that the ground state is separable, exhibits a maximal at a critical temperature and terminates at a finite temperature. The influences of coupler nonlinearities and dipole–dipole coupling on the thermal atom–atom entanglement are also addressed in detail.  相似文献   

3.
It is shown that a straightforward measure of the temperature dependence of energy resolved atom–surface scattering spectra measured under classical conditions can be related to the strength of the surface corrugation. Using classical perturbation theory combined with a Langevin bath formalism for describing energy transfer, explicit expressions for the scattering probabilities are obtained for both two-dimensional, in-plane scattering and full three-dimensional scattering. For strong surface corrugations results expressed as analytic closed-form equations for the scattering probability are derived which demonstrate that the temperature dependence of the scattering probability weakens with increasing corrugation strength. The relationship to the inelastic rainbow is briefly discussed.  相似文献   

4.
G.V. Dedkov  A.A. Kyasov 《Surface science》2011,605(11-12):1077-1081
We obtained new nonrelativistic expression for the dynamical van der Waals atom–surface interaction energy of a very convenient form for different applications. It is shown that classical result (Ferrell and Ritchie, 1980) holds only for a very slowly moving atom. In general case, the van der Waals atom–surface interaction energy manifests strong nonlinear dependence on the velocity and distance. In close vicinity of metal and dielectric surfaces and velocities ranging from 1 to 10 bohr units the dynamical van der Waals potential proves to be several times lower than in the static case and goes to the static values with increasing the distance and (or) decreasing the velocity.  相似文献   

5.
We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ- π- π /2 type of atom interferometer, we find that the visibility(V) and predictability(P) still satisfy the duality relation, P2+ V2≤ 1.  相似文献   

6.
程冬  李亚  凤尔银  黄武英 《中国物理 B》2017,26(1):13402-013402
We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule,taking the He–PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom–molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale.  相似文献   

7.
Resonances in positron scattering from several atomic and molecular species are predicted by theoretical models. However, only positron–molecule binding was experimentally confirmed so far. Sharp structures in positron total cross sections were also measured; however, their detection is still in a very preliminary stage owing to instrumental limitations. Here we briefly review the present knowledge about structures in low-energy positron scattering. Based on further measurements and re-analysis of the experimental data collected at the University of Trento, we also present evidence of sharp structures in the total cross sections for several atomic and molecular targets. We find that the behaviour of some of those features can be described using the equation of a Fano resonance line-shape, despite the fact that an actual resonant scattering process might not be involved. Possible mechanisms that can give rise to such structures still need to be identified. Further independent experimental work using high-resolution spectrometers is needed in order to confirm the existence of structures in positron scattering cross sections.  相似文献   

8.
Molecular dynamics simulations of water, liquid beryllium fluoride and silica melt are used to study the accuracy with which the entropy of ionic and molecular liquids can be estimated from atom–atom radial distribution function data. The pair correlation entropy is demonstrated to be sufficiently accurate that the density–temperature regime of anomalous behaviour as well as the strength of the entropy anomaly can be predicted reliably for both ionic melts as well as different rigid-body pair potentials for water. Errors in the total thermodynamic entropy for ionic melts due to the pair correlation approximation are of the order of 10% or less for most state points, but can be significantly larger in the anomalous regime at very low temperatures. In the case of water, the rigid-body constraints result in larger errors in the pair correlation approximation, between 20 and 30%, for most state points. Comparison of the excess entropy, S e, of ionic melts with the pair correlation entropy, S 2, shows that the temperature dependence of S e is well described by T ?2/5 scaling across both the normal and anomalous regimes, unlike in the case of S 2. The residual multiparticle entropy, ΔS = S e ? S 2, shows a strong negative correlation with tetrahedral order in the anomalous regime.  相似文献   

9.
The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom–surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom–surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle–surface interactions.  相似文献   

10.
Coherent perfect absorption provides a method of light-controlling-light and has practical applications in optical communications. Recently, a cavity-based nonlinear perfect photon absorption extends the coherent perfect absorber(CPA)beyond the linear regime. As nanowire-based system is a more competitive candidate for full-optical device, we introduce a nonlinear CPA in the single two-level atom–nanowires coupling system in this work. Nonlinear input–output relations are derived analytically, and three contributions of atomic saturation nonlinearity are explicit. The consociation of optical nonlinearity and destructive interference makes it feasible to fabricate a nonlinear monoatomic CPA. Our results also indicate that a nonlinear system may work linearly even when the incoming lights are not weak any more. Our findings show promising applications in full-optical devices.  相似文献   

11.
In this contribution, we present some recent theoretical results concerning the fringe contrast in Mach–Zehnder atom interferometers and the use of Bloch states to describe atomic diffraction. We also describe the observation of diffraction of lithium at thermal energy by a quasi-resonant laser standing wave.  相似文献   

12.
We study stationary entanglement properties of an optomechanical system containing an atomic ensemble. We focus onto the case of the movable mirror strongly coupled to the cavity field through both radiation pressure and photothermal force. Exploiting a quantum Langevin equation approach we investigate the bipartite entanglement properties of various bipartite subsystems as well as stationary tripartite entanglement of the system. We particularly study robustness of the atom–mirror entanglement against temperature. We show that, even though the photothermal force is a dissipative force, it can significantly improve the cavity mediated atom–mirror entanglement.  相似文献   

13.
Taking the advantage of "parity kicks" pulses, we investigate the non-classical correlation dynamics and quantum state transfer in an atom–cavity–fiber system, which consists of two identical subsystems, each subsystem comprising of multiple two-level atoms trapped in two remote single-model optical cavities that are linked by an optical fiber. It is found that the non-classical correlations and the fidelity of quantum state transfer(between the atoms) can be greatly improved by the parity kicks pulses. In particular, with decrease of the time intervals between two consecutive pulses, perfect non-classical correlation transfer and entangled state transfer can be achieved.  相似文献   

14.
The modified embedded atom method is tested in the atomistic simulations of binary fcc metallic alloys. As an example the alloying behaviour of Cu–Ag is studied using the molecular dynamics (MD) method. The MD algorithms that we use are based on the extended Hamiltonian formalism and the ordinary experimental conditions are simulated using the constant-pressure, constant temperature (NPT) (MD) method. The enthalpy of mixing values of the random Ag–Cu binary alloys are obtained as functions of concentration after 20 000 steps.  相似文献   

15.
The results of molecular dynamics simulations of the diffusion of self-interstitial atom clusters in Fe–Cr alloys of different Cr content are presented. It is shown that, with increasing Cr concentration, the cluster diffusivity first decreases and then increases, in accordance with the predictions of a model developed recently and based on molecular static calculations. The minimum diffusivity is found at about 10 at% Cr for small clusters and it shifts towards lower concentration with increasing cluster size. The migration energy of SIA clusters is found to lie in between the binding energy of a Cr atom with a crowdion and half of it. This indicates that the mechanism of cluster migration is via the movement of individual crowdions from one Cr atom to another. The values obtained statically are much higher and are argued to be more reliable due to better sampling of different configurations in a bigger simulation box.  相似文献   

16.
王方原  李桂琴 《中国物理 B》2016,25(7):77304-077304
The spin transport properties of S–Au–S junction and Au–Au–Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S–Au–S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au–Au–Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au–Au–Au junction may transform information between distance, bias,and electron spin. Those unique properties make them potential candidates for a logical nanocircuit.  相似文献   

17.
A. J. Detor  M. K. Miller 《哲学杂志》2013,93(28):4459-4475
Atom probe tomography is used to observe the solute distribution in electrodeposited nanocrystalline Ni–W alloys with three different grain sizes (3, 10 and 20?nm) and the results are compared with atomistic computer simulations. The presence of grain boundary segregation is confirmed by detailed analysis of composition fluctuations in both experimental and simulated structures, and its extent quantified by a frequency distribution analysis. In contrast to other nanocrystalline alloys previously examined by atom probe tomography, such as Ni–P, the present nanocrystalline Ni–W alloys exhibit only a subtle amount of solute segregation to the intergranular regions.  相似文献   

18.
Quantum state discrimination is an important part of quantum information processing. We investigate the discrimination of coherent states through a Jaynes–Cummings(JC) model interaction between the field and the ancilla without rotation wave approximation(RWA). We show that the minimum failure probability can be reduced as RWA is eliminated from the JC model and the non-RWA terms accompanied by the quantum effects of fields(e.g. the virtualphoton process in the JC model without RWA) can enhance ...  相似文献   

19.
We report on the implementation of a thin wire Paul trap with tungsten wire electrodes for trapping ions. The ion trap geometry, though compact, allows large optical access enabling a moderate finesse Fabry–Perot cavity to be built along the ion trap axis. The design allows a vapor-loaded magneto-optical trap of alkali atoms to be overlapped with trapped atomic or molecular ions. The construction and design of the trap are discussed, and its operating parameters are determined, both experimentally and numerically, for Rb+. The macromotion frequencies of the ion trap for 85Rb+ are determined to be f r  = 43 kHz for the radial and f z  = 54 kHz for the axial frequencies, for the experimentally determined optimal operating parameters. The destructive off axis ion extraction and detection by ion counting is demonstrated. Finally, evidence for the stabilization and cooling of trapped ions, due to ion–atom interactions, is presented by studying the ion-atom mixture as a function of interaction time. The utility and flexibility of the whole apparatus, for a variety of atomic physics experiments, are discussed in conclusion.  相似文献   

20.
Hydrogen atom transfer and the related electronic rearrangement in the hydrated C–G base pair have been studied in order to understand the role of the hydrogen bonds between the bases and those with the water molecules in these processes. The modification of hydrogen transfer due to the first shell and bulk hydration has been analysed. The different structures, when the hydrogen atom moves in a H-bond or in another bond, have been studied. Two naïve schemes, where the water molecules are only indirectly or directly involved in the hydrogen atom transfer, have been considered. The results support the idea that the actual mechanisms are more complex than these schemes. Hydration modifies the potential energy curves of both tautomers and zwitterionic structures, but does not generate new stable structures (minimum PES) of these types. We find a new stable structure due to both a reorganization of the two down water molecules and other global changes of the system. This new system is generated from a zwitterionic structure. The charges, during hydrogen transfer, of the hydrogen donor and of the hydrogen acceptor part of the base pair and of the hydrogen atoms between the bases have been determined and their modifications, due to the first shell and bulk hydration, have been analysed. The qualitative and quantitative behavior has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号