首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
The system of all congruences of an algebra (AF) forms a lattice, denoted \({{\mathrm{Con}}}(A, F)\). Further, the system of all congruence lattices of all algebras with the base set A forms a lattice \(\mathcal {E}_A\). We deal with meet-irreducibility in \(\mathcal {E}_A\) for a given finite set A. All meet-irreducible elements of \(\mathcal {E}_A\) are congruence lattices of monounary algebras. Some types of meet-irreducible congruence lattices were described in Jakubíková-Studenovská et al. (2017). In this paper, we prove necessary and sufficient conditions under which \({{\mathrm{Con}}}(A, f)\) is meet-irreducible in the case when (Af) is an algebra with short tails (i.e., f(x) is cyclic for each \(x \in A\)) and in the case when (Af) is an algebra with small cycles (every cycle contains at most two elements).  相似文献   

3.
4.
We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.  相似文献   

5.
Let \({\mathcal L}\equiv-\Delta+V\) be the Schrödinger operator in \({{\mathbb R}^n}\), where V is a nonnegative function satisfying the reverse Hölder inequality. Let ρ be an admissible function modeled on the known auxiliary function determined by V. In this paper, the authors characterize the localized Hardy spaces \(H^1_\rho({{\mathbb R}^n})\) in terms of localized Riesz transforms and establish the boundedness on the BMO-type space \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) of these operators as well as the boundedness from \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) to \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) of their corresponding maximal operators, and as a consequence, the authors obtain the Fefferman–Stein decomposition of \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) via localized Riesz transforms. When ρ is the known auxiliary function determined by V, \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) is just the known space \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\), and \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) in this case is correspondingly denoted by \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\). As applications, when n?≥?3, the authors further obtain the boundedness on \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) of Riesz transforms \(\nabla{\mathcal L}^{-1/2}\) and their adjoint operators, as well as the boundedness from \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) to \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\) of their maximal operators. Also, some endpoint estimates of fractional integrals associated to \({\mathcal L}\) are presented.  相似文献   

6.
For two independent groups, let \(M_j(\mathbf {X})\) be some conditional measure of location for the jth group associated with some random variable Y given \(\mathbf {X}=(X_1, X_2)\). Let \(\Omega =\{\mathbf {X}_1, \ldots , \mathbf {X}_K\}\) be a set of K points to be determined. An extant technique can be used to test \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for each \(\mathbf {X} \in \Omega \) without making any parametric assumption about \(M_j(\mathbf {X})\). But there are two general reasons to suspect that the method can have relatively low power. The paper reports simulation results on an alternative approach that is designed to test the global hypothesis \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for all \(\mathbf {X} \in \Omega \). The main result is that the new method offers a distinct power advantage. Using data from the Well Elderly 2 study, it is illustrated that the alternative method can make a practical difference in terms of detecting a difference between two groups.  相似文献   

7.
Completely regular semigroups \(\mathcal {C}\mathcal {R}\) are unions of their subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by \(\mathcal {L}(\mathcal {C}\mathcal {R})\). The Polák theorem concerns the computation of joins in \(\mathcal {L}(\mathcal {C}\mathcal {R})\). The \(\mathbf {B}\)-relation on \(\mathcal {L}(\mathcal {C}\mathcal {R})\) identifies varieties with the same bands. We elaborate upon two nontrivial conditions in Polák’s theorem applied to certain subsets of \(\mathcal {C}\mathcal {R}\) which amounts to solving particular equations in \(\mathcal {L}(\mathcal {C}\mathcal {R})\).  相似文献   

8.
We find a syntactic characterization of the class \(\mathrm{\mathbf{SUB}}(\mathcal{S})\cap\mathrm{Fin}\) of finite lattices embeddable into convexity lattices of a certain class of posets which we call star-like posets and which is a proper subclass in the class of N-free posets. The characterization implies that the class \(\mathrm{\mathbf{SUB}}(\mathcal{S})\cap\mathrm{Fin}\) forms a pseudovariety.  相似文献   

9.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

10.
The gradient descent method minimizes an unconstrained nonlinear optimization problem with \({\mathcal {O}}(1/\sqrt{K})\), where K is the number of iterations performed by the gradient method. Traditionally, this analysis is obtained for smooth objective functions having Lipschitz continuous gradients. This paper aims to consider a more general class of nonlinear programming problems in which functions have Hölder continuous gradients. More precisely, for any function f in this class, denoted by \({{\mathcal {C}}}^{1,\nu }_L\), there is a \(\nu \in (0,1]\) and \(L>0\) such that for all \(\mathbf{x,y}\in {{\mathbb {R}}}^n\) the relation \(\Vert \nabla f(\mathbf{x})-\nabla f(\mathbf{y})\Vert \le L \Vert \mathbf{x}-\mathbf{y}\Vert ^{\nu }\) holds. We prove that the gradient descent method converges globally to a stationary point and exhibits a convergence rate of \({\mathcal {O}}(1/K^{\frac{\nu }{\nu +1}})\) when the step-size is chosen properly, i.e., less than \([\frac{\nu +1}{L}]^{\frac{1}{\nu }}\Vert \nabla f(\mathbf{x}_k)\Vert ^{\frac{1}{\nu }-1}\). Moreover, the algorithm employs \({\mathcal {O}}(1/\epsilon ^{\frac{1}{\nu }+1})\) number of calls to an oracle to find \({\bar{\mathbf{x}}}\) such that \(\Vert \nabla f({{\bar{\mathbf{x}}}})\Vert <\epsilon \).  相似文献   

11.
Let \({\mathscr {N}}\) be a 2-step nilpotent Lie algebra endowed with a non-degenerate scalar product \(\langle .\,,.\rangle \), and let \({\mathscr {N}}=V\oplus _{\perp }Z\), where Z is the centre of the Lie algebra and V its orthogonal complement. We study classification of the Lie algebras for which the space V arises as a representation space of the Clifford algebra \({{\mathrm{{\mathrm{Cl}}}}}({\mathbb {R}}^{r,s})\), and the representation map \(J:{{\mathrm{{\mathrm{Cl}}}}}({\mathbb {R}}^{r,s})\rightarrow {{\mathrm{End}}}(V)\) is related to the Lie algebra structure by \(\langle J_zv,w\rangle =\langle z,[v,w]\rangle \) for all \(z\in {\mathbb {R}}^{r,s}\) and \(v,w\in V\). The classification depends on parameters r and s and is completed for the Clifford modules V having minimal possible dimension, that are not necessary irreducible. We find necessary conditions for the existence of a Lie algebra isomorphism according to the range of the integer parameters \(0\le r,s<\infty \). We present a constructive proof for the isomorphism maps for isomorphic Lie algebras and determine the class of non-isomorphic Lie algebras.  相似文献   

12.
The main object of study in this paper is the double holomorphic Eisenstein series \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) having two complex variables \(\mathbf{s}=(s_1,s_2)\) and two parameters \(\mathbf{z}= (z_1,z_2)\) which satisfies either \(\mathbf{z}\in (\mathfrak {H}^+)^2\) or \(\mathbf{z}\in (\mathfrak {H}^-)^2\), where \(\mathfrak {H}^{\pm }\) denotes the complex upper and lower half-planes, respectively. For \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\), its transformation properties and asymptotic aspects are studied when the distance \(|z_2-z_1|\) becomes both small and large under certain natural settings on the movement of \(\mathbf{z}\in (\mathfrak {H}^{\pm })^2\). Prior to the proofs our main results, a new parameter \(\eta \), which plays a pivotal role in describing our results, is introduced in connection with the difference \(z_2-z_1\). We then establish complete asymptotic expansions for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) when \(\mathbf{z}\) moves within the poly-sector either \((\mathfrak {H}^+)^2\) or \((\mathfrak {H}^-)^2\), so as to \(\eta \rightarrow 0\) through \(|\arg \eta |<\pi /2\) in the ascending order of \(\eta \) (Theorem 1). This further leads us to show that counterpart expansions exist for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) in the descending order of \(\eta \) as \(\eta \rightarrow \infty \) through \(|\arg \eta |<\pi /2\) (Theorem 2). Our second main formula in Theorem 2 yields a functional equation for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) (Corollaries 2.12.2), and also reduces naturally to various expressions of \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) in closed forms for integer lattice point \(\mathbf{s}\in \mathbb {Z}^2\) (Corollaries 2.32.17). Most of these results reveal that the particular values of \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) at \(\mathbf{s}\in \mathbb {Z}^2\) are closely linked to Weierstraß’ elliptic function, the classical Eisenstein series reformulated by Ramanujan, and the Jordan–Kronecker type functions, each associated with the bases \(2\pi (1, z_j)\), \(j=1,2\). The latter two functions were extensively utilized by Ramanujan in the course of developing his theories of Eisenstein series, elliptic functions, and theta functions. As for the methods used, crucial roles in the proofs are played by the Mellin–Barnes type integrals, manipulated with several properties of hypergeometric functions; the transference from Theorem 1 to Theorem 2 is, for instance, achieved by a connection formula for Kummer’s confluent hypergeometric functions.  相似文献   

13.
A completely regular semigroup is a (disjoint) union of its (maximal) subgroups. We consider it here with the unary operation of inversion within its maximal subgroups. Their totality \(\mathcal {C}\mathcal {R}\) forms a variety whose lattice of subvarieties is denoted by \(\mathcal {L}(\mathcal {C}\mathcal {R})\). On it, one defines the relations \(\mathbf {B}^\wedge \) and \(\mathbf {B}^\vee \) by
$$\begin{aligned} \begin{array}{lll} \mathcal {U}\ \mathbf {B}^\wedge \ \mathcal {V}&{} \Longleftrightarrow &{} \mathcal {U}\cap \mathcal {B} =\mathcal {V}\cap \mathcal {B}, \\ \mathcal {U}\ \mathbf {B}^\vee \ \mathcal {V}&{} \Longleftrightarrow &{} \mathcal {U}\vee \mathcal {B} =\mathcal {V}\vee \mathcal {B} , \end{array} \end{aligned}$$
respectively, where \(\mathcal {B}\) denotes the variety of all bands. This is a study of the interplay between the \(\cap \)-subsemilatice \(\triangle \) of \(\mathcal {L}(\mathcal {C}\mathcal {R})\) of upper ends of \(\mathbf {B}^\wedge \)-classes and their \(\mathbf {B}^\vee \)-classes. The main tool is the concept of a ladder and their \(\mathbf {B}^\vee \)-classes, an indispensable part of the important Polák’s theorem providing a construction for the join of varieties of completely regular semigroups. The paper includes the tables of ladders of the upper ends of most \(\mathbf {B}^\wedge \)-classes. Canonical varieties consist of two ascending countably infinite chains which generate most of the upper ends of \(\mathbf {B}^\wedge \)-classes.
  相似文献   

14.
In this article, we study the action of the \(U_p\) Hecke operator on the normalized spherical vector \(\phi \) in the representation of \({{\mathrm{GSp}}}_4(\mathbf {Q}_p)\) induced from a character on the Borel subgroup. We compute the Petersson norm of \(U_p \phi \) in terms of certain local L-values associated with \(\phi \).  相似文献   

15.
The paper presents the complete classification of Automorphic Lie Algebras based on \({{\mathfrak {sl}}}_{n}(\mathbb {C})\), where the symmetry group G is finite and acts on \({{\mathfrak {sl}}}_n(\mathbb {C})\) by inner automorphisms, \({{\mathfrak {sl}}}_n(\mathbb {C})\) has no trivial summands, and where the poles are in any of the exceptional G-orbits in \(\overline{\mathbb {C}}\). A key feature of the classification is the study of the algebras in the context of classical invariant theory. This provides on the one hand a powerful tool from the computational point of view; on the other, it opens new questions from an algebraic perspective (e.g. structure theory), which suggest further applications of these algebras, beyond the context of integrable systems. In particular, the research shows that this class of Automorphic Lie Algebras associated with the \(\mathbb {T}\mathbb {O}\mathbb {Y}\) groups (tetrahedral, octahedral and icosahedral groups) depend on the group through the automorphic functions only; thus, they are group independent as Lie algebras. This can be established by defining a Chevalley normal form for these algebras, generalising this classical notion to the case of Lie algebras over a polynomial ring.  相似文献   

16.
17.
Let \({{\mathrm{{PG}}}}(1,E)\) be the projective line over the endomorphism ring \( E={{\mathrm{End}}}_q({\mathbb F}_{q^t})\) of the \({\mathbb F}_q\)-vector space \({\mathbb F}_{q^t}\). As is well known, there is a bijection \(\varPsi :{{\mathrm{{PG}}}}(1,E)\rightarrow {\mathcal G}_{2t,t,q}\) with the Grassmannian of the \((t-1)\)-subspaces in \({{\mathrm{{PG}}}}(2t-1,q)\). In this paper along with any \({\mathbb F}_q\)-linear set L of rank t in \({{\mathrm{{PG}}}}(1,q^t)\), determined by a \((t-1)\)-dimensional subspace \(T^\varPsi \) of \({{\mathrm{{PG}}}}(2t-1,q)\), a subset \(L_T\) of \({{\mathrm{{PG}}}}(1,E)\) is investigated. Some properties of linear sets are expressed in terms of the projective line over the ring E. In particular, the attention is focused on the relationship between \(L_T\) and the set \(L'_T\), corresponding via \(\varPsi \) to a collection of pairwise skew \((t-1)\)-dimensional subspaces, with \(T\in L'_T\), each of which determine L. This leads among other things to a characterization of the linear sets of pseudoregulus type. It is proved that a scattered linear set L related to \(T\in {{\mathrm{{PG}}}}(1,E)\) is of pseudoregulus type if and only if there exists a projectivity \(\varphi \) of \({{\mathrm{{PG}}}}(1,E)\) such that \(L_T^\varphi =L'_T\).  相似文献   

18.
We study the transition density of a standard two-dimensional Brownian motion killed when hitting a bounded Borel set A. We derive the asymptotic form of the density, say \(p^A_t(\mathbf{x},\mathbf{y})\), for large times t and for \(\mathbf{x}\) and \(\mathbf{y}\) in the exterior of A valid uniformly under the constraint \(|\mathbf{x}|\vee |\mathbf{y}| =O(t)\). Within the parabolic regime \(|\mathbf{x}|\vee |\mathbf{y}| = O(\sqrt{t})\) in particular \(p^A_t(\mathbf{x},\mathbf{y})\) is shown to behave like \(4e_A(\mathbf{x})e_A(\mathbf{y}) (\lg t)^{-2} p_t(\mathbf{y}-\mathbf{x})\) for large t, where \(p_t(\mathbf{y}-\mathbf{x})\) is the transition kernel of the Brownian motion (without killing) and \(e_A\) is the Green function for the ‘exterior of A’ with a pole at infinity normalized so that \(e_A(\mathbf{x}) \sim \lg |\mathbf{x}|\). We also provide fairly accurate upper and lower bounds of \(p^A_t(\mathbf{x},\mathbf{y})\) for the case \(|\mathbf{x}|\vee |\mathbf{y}|>t\) as well as corresponding results for the higher dimensions.  相似文献   

19.
Using limiting interpolation techniques we study the relationship between Besov spaces \(\mathbf B ^{0,-1/q}_{p,q}\) with zero classical smoothness and logarithmic smoothness \(-1/q\) defined by means of differences with similar spaces \(B^{0,b,d}_{p,q}\) defined by means of the Fourier transform. Among other things, we prove that \(\mathbf B ^{0,-1/2}_{2,2}=B^{0,0,1/2}_{2,2}\). We also derive several results on periodic spaces \(\mathbf B ^{0,-1/q}_{p,q}(\mathbb {T})\), including embeddings in generalized Lorentz–Zygmund spaces and the distribution of Fourier coefficients of functions of \(\mathbf B ^{0,-1/q}_{p,q}(\mathbb {T})\).  相似文献   

20.
We are interested in the 3-Calabi-Yau categories \({\mathcal {D}}\) arising from quivers with potential associated to a triangulated marked surface \(\mathbf {S}\) (without punctures). We prove that the spherical twist group \(\mathrm{ST}\) of \({\mathcal {D}}\) is isomorphic to a subgroup (generated by braid twists) of the mapping class group of the decorated marked surface \({\mathbf {S}}_\bigtriangleup \). Here \({\mathbf {S}}_\bigtriangleup \) is the surface obtained from \(\mathbf {S}\) by decorating with a set of points, where the number of points equals the number of triangles in any triangulations of \(\mathbf {S}\). For instance, when \(\mathbf {S}\) is an annulus, the result implies that the corresponding spaces of stability conditions on \({\mathcal {D}}\) are contractible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号