首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The iridium half-sandwich complex [Ir(η51-C5Me4CH2py)(2-phenylpyridine)]PF6 is highly cytotoxic: 15–250× more potent than clinically used cisplatin in several cancer cell lines. We have developed a correlative 3D cryo X-ray imaging approach to specifically localize and quantify iridium within the whole hydrated cell at nanometer resolution. By means of cryo soft X-ray tomography (cryo-SXT), which provides the cellular ultrastructure at 50 nm resolution, and cryo hard X-ray fluorescence tomography (cryo-XRF), which provides the elemental sensitivity with a 70 nm step size, we have located the iridium anticancer agent exclusively in the mitochondria. Our methodology provides unique information on the intracellular fate of the metallodrug, without chemical fixation, labeling, or mechanical manipulation of the cells. This cryo-3D correlative imaging method can be applied to a number of biochemical processes for specific elemental localization within the native cellular landscape.  相似文献   

2.
A straightforward two-step procedure via single CO removal allows the conversion of commercial [Fe2Cp2(CO)4] into a range of amphiphilic and robust ionic complexes based on a hybrid aminocarbyne/iminium ligand, [Fe2Cp2(CO)3{CN(R)(R’)}]X (R, R’=alkyl or aryl; X=CF3SO3 or BF4), on up to multigram scales. Their physicochemical properties can be modulated by an appropriate choice of N-substituents and counteranion. Tested against a panel of human cancer cell lines, the complexes were shown to possess promising antiproliferative activity and to circumvent multidrug resistance. Interestingly, most derivatives also retained a significant cytotoxic activity against human cancer 3D cell cultures. Among them, the complex with R=4-C6H4OMe and R’=Me emerged as the best performer of the series, being on average about six times more active against cancer cells than a noncancerous cell line, and displayed IC50 values comparable to those of cisplatin in 3D cell cultures. Mechanistic studies revealed the ability of the complexes to release carbon monoxide and to act as oxidative stress inducers in cancer cells.  相似文献   

3.
Understanding the mechanism of action (MOA) of bioactive natural products will guide endeavor to improve their cellular activities. Artemisinin and its derivatives inhibit cancer cell proliferation, yet with much lower efficiencies than their roles in killing malaria parasites. To improve their efficacies on cancer cells, we studied the MOA of artemisinin using chemical proteomics and found that free heme could directly activate artemisinin. We then designed and synthesized a derivative, ART‐TPP, which is capable of targeting the drug to mitochondria where free heme is synthesized. Remarkably, ART‐TPP exerted more potent inhibition than its parent compound to cancer cells. A clickable probe ART‐TPP‐Alk was also employed to confirm that the attachment of the TPP group could label more mitochondrial proteins than that for the ART derivative without TPP (AP1). This work shows the importance of MOA study, which enables us to optimize the design of natural drug analogues to improve their biological activities.  相似文献   

4.
5.
The compartmentalization of chemical reactions is an essential principle of life that provides a major source of innovation for the development of novel approaches in biocatalysis. To implement spatially controlled biotransformations, rapid manufacturing methods are needed for the production of biocatalysts that can be applied in flow systems. Whereas three‐dimensional (3D) printing techniques offer high‐throughput manufacturing capability, they are usually not compatible with the delicate nature of enzymes, which call for physiological processing parameters. We herein demonstrate the utility of thermostable enzymes in the generation of biocatalytic agarose‐based inks for a simple temperature‐controlled 3D printing process. As examples we utilized an esterase and an alcohol dehydrogenase from thermophilic organisms as well as a decarboxylase that was thermostabilized by directed protein evolution. We used the resulting 3D‐printed parts for a continuous, two‐step sequential biotransformation in a fluidic setup.  相似文献   

6.
Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK‐Acr) has been designed that targets G‐quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK‐Acr catalyst to selectively bind and cleave the G‐quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) experiments. CuGGHK‐Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7.  相似文献   

7.
8.
9.
10.
A series of urea‐derived heterocycles, 5N‐substituted hexahydro‐1,3,5‐triazin‐2‐ones, has been prepared and their structures have been determined for the first time. This family of compounds only differ in their substituent at the 5‐position (which is derived from the corresponding primary amine), that is, methyl ( 1 ), ethyl ( 2 ), isopropyl ( 3 ), tert‐butyl ( 4 ), benzyl ( 5 ), N,N‐(diethyl)ethylamine ( 6 ), and 2‐hydroxyethyl ( 7 ). The common heterocyclic core of these molecules is a cyclic urea, which has the potential to form a hydrogen‐bonding tape motif that consists of self‐associative (8) dimers. The results from X‐ray crystallography and, where possible, Laue neutron crystallography show that the hydrogen‐bonding motifs that are observed and the planarity of the hydrogen bonds appear to depend on the steric hindrance at the α‐carbon atom of the N substituent. With the less‐hindered substituents, methyl and ethyl, the anticipated tape motif is observed. When additional methyl groups are added onto the α‐carbon atom, as in the isopropyl and tert‐butyl derivatives, a different 2D hydrogen‐bonding motif is observed. Despite the bulkiness of the substituents, the benzyl and N,N‐(diethyl)ethylamine derivatives have methylene units at the α‐carbon atom and, therefore, display the tape motif. The introduction of a competing hydrogen‐bond donor/acceptor in the 2‐hydroxyethyl derivative disrupts the tape motif, with a hydroxy group interrupting the N? H???O?C interactions. The geometry around the hydrogen‐bearing nitrogen atoms, whether planar or non‐planar, has been confirmed for compounds 2 and 5 by using Laue neutron diffraction and rationalized by using computational methods, thus demonstrating that distortion of O‐C‐N‐H torsion angles occurs to maintain almost‐linear hydrogen‐bonding interactions.  相似文献   

11.
Most methods for the quantification of physiological levels of vitamin D3 and 25‐hydroxyvitamin D3 are developed for food analysis where the sample size is not usually a critical parameter. In contrast, in life science studies sample sizes are often limited. A very sensitive liquid chromatography with tandem mass spectrometry method was developed to quantify vitamin D3 and 25‐hydroxyvitamin D3 simultaneously in porcine tissues. A sample of 0.2–1 g was saponified followed by liquid–liquid extraction and normal‐phase solid‐phase extraction. The analytes were derivatized with 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione to improve the ionization efficiency by electrospray ionization. The method was validated in porcine liver and adipose tissue, and the accuracy was determined to be 72–97% for vitamin D3 and 91–124% for 25‐hydroxyvitamin D3. The limit of quantification was <0.1 ng/g, and the precision varied between 1.4 and 16% depending on the level of spiking. The small sample size required for the described method enables quantification of vitamin D3 and 25‐hydroxyvitamin D3 in tissues from studies where sample sizes are limited.  相似文献   

12.
Given the unique structural and electronic properties of C60, metal–organic frameworks (MOFs) containing C60 linkers are expected to exhibit interesting characteristics. A new hexakisfullerene derivative possessing two pairs of phenyl pyridine groups attached to two methano‐carbon atoms located at the trans‐1 positions was designed and synthesized. The four pyridyl nitrogen atoms define a perfectly planar rectangle. This new C60 derivative was used to assemble the first fullerene‐linked two‐dimensional MOF by coordination with Cd2+.  相似文献   

13.
14.
An unusual lithium lithiate [Li(diglyme)2][(diglyme)Li2(C4H3S)3], made up from three carbanions, two lithium cations, and a single donor base molecule in the anion and a single lithium cation, coordinated by two donor base molecules, is investigated in a combined study including X‐ray diffraction, NMR spectroscopy and computational approaches in solution and the solid state. While the multicomponent lithiate is the only species present in the solid state, solution NMR spectroscopy and computational methods were employed to identify a second species in solution. The dimer [(diglyme)Li(C4H3S)]2 coexists with the lithiate in solution in a 1:1 ratio, the more the higher the polarity of the solvent is. Only the combination of this multitude of methods provides a firm picture of the whole.  相似文献   

15.
An artificial metalloenzyme based on the covalent grafting of a nonheme FeII polyazadentate complex into bovine β‐lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the FeII catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin‐state conversion of the initial high spin (S=2) FeII complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center’s first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2O2 reveals the generation of a high spin (S=5/2) FeIII2‐O2) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.  相似文献   

16.
A series of molecular metalla[2]catenanes featuring Cp*Ir vertices have been prepared by the template‐free, coordination‐driven self‐assembly of dinuclear iridium acceptors and 1,5‐bis[2‐(4‐pyridyl)ethynyl]anthracene donors. The metalla[2]catenanes were formed by using a strategically selected linker type that is capable of participating in sandwich‐type π–π stacking interactions. In the solid state, the [2]catenanes adopt two different configurations depending on the halogen atoms at the dinuclear metal complex bridge. Altering the solvent or the concentration, as well as the addition of guest molecules, enabled controlled transformations between metalla[2]catenanes and tetranuclear metallarectangles.  相似文献   

17.
18.
Summary: Biodegradable poly[(R)‐3‐hydroxybutyrate] (P(3HB)) fibers with high tensile strength of 1.32 GPa were processed from ultra‐high‐molecular‐weight P(3HB) by a method combining cold‐drawing and two‐step‐drawing procedures at room temperature. The distribution of molecular structures in a mono‐filament was analyzed by micro‐beam X‐ray diffraction with synchrotron radiation. It was revealed that the P(3HB) fiber has a new core‐sheath structure consistent with two types of molecular conformations: a 21 helix conformation in the sheath region and a planar zigzag conformation in the core region.

P(3HB) fiber processed by cold‐drawing in ice water and two‐step drawing at room temperature, and subsequently annealing at 50 °C.  相似文献   


19.
The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for C?C bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)‐cyclooctadiene complexes having a NHC ligand with a O‐ or N‐functionalised wingtip efficiently catalysed the oxidation and β‐alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3)(cod)(MeIm(2‐ methoxybenzyl))][BF4] (cod=1,5‐cyclooctadiene, MeIm=1‐methylimidazolyl) having a rigid O‐functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0) of 1283 h?1, and also in the β‐alkylation of 2‐propanol with butan‐1‐ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan‐2‐ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross‐aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new C?C bond that involves the reaction of an O‐bound enolate generated in the basic medium with the electrophilic aldehyde.  相似文献   

20.
The development of Ir‐catalyzed asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides is described. This reaction proceeds through a dynamic kinetic resolution to produce anti‐β‐hydroxy‐α‐amino acid esters in a high diastereo‐ and enantioselective manner. Mechanistic studies have revealed that this unique asymmetric hydrogenation proceeds through reduction of the ketone moiety via the five‐membered transition state involving the chelation between the oxygen of the ketone and the nitrogen of the amine function. The relationship studies between the hydrogen pressure and the stereoselectivity have disclosed two mechanisms dependent on hydrogen pressure. Under low hydrogen pressure (<15 atm), the reaction rate proportionally increased with the hydrogen pressure. However, under the high hydrogen conditions, the reaction rate exponentially accelerated along with the increasing hydrogen pressure, which suggests the participation of two or more of hydrogen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号