首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given lists of available colors assigned to the vertices of a graph G, a list coloring is a proper coloring of G such that the color on each vertex is chosen from its list. If the lists all have size k, then a list coloring is equitable if each color appears on at most vertices. A graph is equitably k-choosable if such a coloring exists whenever the lists all have size k. We prove that G is equitably k-choosable when unless G contains or k is odd and . For forests, the threshold improves to . If G is a 2-degenerate graph (given k ≥ 5) or a connected interval graph (other than ), then G is equitably k-choosable when . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 166–177, 2003  相似文献   

2.
An incidence of a graph G is a pair (u,e) where u is a vertex of G and e is an edge of G incident to u. Two incidences (u,e) and (v,f) of G are adjacent whenever (i) u=v, or (ii) e=f, or (iii) uv=e or uv=f. An incidencek-coloring of G is a mapping from the set of incidences of G to a set of k colors such that every two adjacent incidences receive distinct colors. The notion of incidence coloring has been introduced by Brualdi and Quinn Massey (1993) from a relation to strong edge coloring, and since then, has attracted a lot of attention by many authors.On a list version of incidence coloring, it was shown by Benmedjdoub et al. (2017) that every Hamiltonian cubic graph is incidence 6-choosable. In this paper, we show that every cubic (loopless) multigraph is incidence 6-choosable. As a direct consequence, it implies that the list strong chromatic index of a (2,3)-bipartite graph is at most 6, where a (2,3)-bipartite graph is a bipartite graph such that one partite set has maximum degree at most 2 and the other partite set has maximum degree at most 3.  相似文献   

3.
A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Deng et al. and Bezegová et al. independently show that the star chromatic index of a tree with maximum degree Δ is at most ?3Δ2?, which is tight. In this paper, we study the list star edge coloring of k-degenerate graphs. Let chst(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound on the star chromatic index of trees also holds for list star chromatic index of trees, i.e. chst(T)?3Δ2? for any tree T with maximum degree Δ. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs.  相似文献   

4.
5.
A proper vertex coloring of a graph G is called a dynamic coloring if for every vertex v of degree at least 2, the neighbors of v receive at least two different colors. Assume that is the minimum number k such that for every list assignment of size k to each vertex of G, there is a dynamic coloring of G such that every vertex is colored with a color from its list. In this paper, it is proved that if G is a graph with no component isomorphic to C5 and Δ(G)≥3, then , where Δ(G) is the maximum degree of G. This generalizes a result due to Lai, Montgomery and Poon which says that under the same assumptions χ2(G)≤Δ(G)+1. Among other results, we determine , for every natural number n.  相似文献   

6.
A dynamic coloring of a graph is a proper coloring of its vertices such that every vertex of degree more than one has at least two neighbors with distinct colors. The least number of colors in a dynamic coloring of G, denoted by χ2(G), is called the dynamic chromatic number of G. The least integer k, such that if every vertex of G is assigned a list of k colors, then G has a proper (resp. dynamic) coloring in which every vertex receives a color from its own list, is called the choice number of G, denoted by ch(G) (resp. the dynamic choice number, denoted by ch2(G)). It was recently conjectured (Akbari et al. (2009) [1]) that for any graph G, ch2(G)=max(ch(G),χ2(G)). In this short note we disprove this conjecture. We first give an example of a small planar bipartite graph G with ch(G)=χ2(G)=3 and ch2(G)=4. Then, for any integer k≥5, we construct a bipartite graph Gk such that ch(Gk)=χ2(Gk)=3 and ch2(G)≥k.  相似文献   

7.
Let G be a planar graph with maximum degree 4. It is known that G is 8-totally choosable. It has been recently proved that if G has girth g?6, then G is 5-totally choosable. In this note we improve the first result by showing that G is 7-totally choosable and complete the latter one by showing that G is 6-totally choosable if G has girth at least 5.  相似文献   

8.
We construct graphs with lists of available colors for each vertex, such that the size of every list exceeds the maximum vertex‐color degree, but there exists no proper coloring from the lists. This disproves a conjecture of Reed. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 106–109, 2002  相似文献   

9.
构造了一个图G,给G的每个顶点v一个颜色列表,使得每个列表Lv的大小至少为每个顶点v的邻域NG(v)与每个Vc交集的最大数目,但是这个图不存在一个正常的列表染色,从而推翻了R eed的一个猜想.  相似文献   

10.
LetGbe a planar graph with maximum degreeΔ.In this paper,we prove that if any4-cycle is not adjacent to ani-cycle for anyi∈{3,4}in G,then the list edge chromatic numberχl(G)=Δand the list total chromatic numberχl(G)=Δ+1.  相似文献   

11.
Two cycles are said to be adjacent if they share a common edge. Let G be a planar graph without triangles adjacent 4-cycles. We prove that if Δ(G)≥6, and and if Δ(G)≥8, where and denote the list edge chromatic number and list total chromatic number of G, respectively.  相似文献   

12.
A graph G is equitably k-choosable if for any k-uniform list assignment L, there exists an L-colorable of G such that each color appears on at most vertices. Kostochka, Pelsmajer and West introduced this notion and conjectured that G is equitably k-choosable for k>Δ(G). We prove this for planar graphs with Δ(G)≥6 and no 4- or 6-cycles.  相似文献   

13.
Let G be an n-vertex graph with list-chromatic number χ. Suppose that each vertex of G is assigned a list of t colors. Albertson, Grossman, and Haas [1] conjecture that at least tn vertices can be colored from these lists. We prove a lower bound for the number of colorable vertices. As a corollary, we show that at least of the conjectured number can be colored. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 390–393, 1999  相似文献   

14.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is L‐list colorable if for a given list assignment L = {L(v): vV}, there exists a proper coloring c of G such that c (v) ∈ L(v) for all vV. If G is L‐list colorable for every list assignment with |L (v)| ≥ k for all vV, then G is said k‐choosable. A graph is said to be acyclically k‐choosable if the obtained coloring is acyclic. In this paper, we study the links between acyclic k‐choosability of G and Mad(G) defined as the maximum average degree of the subgraphs of G and give some observations about the relationship between acyclic coloring, choosability, and acyclic choosability. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 281–300, 2006  相似文献   

15.
A well-established generalization of graph coloring is the concept of list coloring. In this setting, each vertex v of a graph G is assigned a list L(v) of k colors and the goal is to find a proper coloring c of G with c(v)∈L(v). The smallest integer k for which such a coloring c exists for every choice of lists is called the list chromatic number of G and denoted by χl(G).We study list colorings of Cartesian products of graphs. We show that unlike in the case of ordinary colorings, the list chromatic number of the product of two graphs G and H is not bounded by the maximum of χl(G) and χl(H). On the other hand, we prove that χl(G×H)?min{χl(G)+col(H),col(G)+χl(H)}-1 and construct examples of graphs G and H for which our bound is tight.  相似文献   

16.
A proper k-coloring C1,C2,…,Ck of a graph G is called strong if, for every vertex uV(G), there exists an index i{1,2,…,k} such that u is adjacent to every vertex of Ci. We consider classes of strongly k-colorable graphs and show that the recognition problem of is NP-complete for every k4, but it is polynomial-time solvable for k=3. We give a characterization of in terms of forbidden induced subgraphs. Finally, we solve the problem of uniqueness of a strong 3-coloring.  相似文献   

17.
Given a graph G=(V,E) and sets L(v) of allowed colors for each vV, a list coloring of G is an assignment of colors φ(v) to the vertices, such that φ(v)∈L(v) for all vV and φ(u)≠φ(v) for all uvE. The choice number of G is the smallest natural number k admitting a list coloring for G whenever |L(v)|≥k holds for every vertex v. This concept has an interesting variant, called Hall number, where an obvious necessary condition for colorability is put as a restriction on the lists L(v). (On complete graphs, this condition is equivalent to the well-known one in Hall’s Marriage Theorem.) We prove that vertex deletion or edge insertion in a graph of order n>3 may make the Hall number decrease by as much as n−3. This estimate is tight for all n. Tightness is deduced from the upper bound that every graph of order n has Hall number at most n−2. We also characterize the cases of equality; for n≥6 these are precisely the graphs whose complements are K2∪(n−2)K1, P4∪(n−4)K1, and C5∪(n−5)K1. Our results completely solve a problem raised by Hilton, Johnson and Wantland [A.J.W. Hilton, P.D. Johnson, Jr., E. B. Wantland, The Hall number of a simple graph, Congr. Numer. 121 (1996), 161-182, Problem 7] in terms of the number of vertices, and strongly improve some estimates due to Hilton and Johnson [A.J.W. Hilton, P.D. Johnson, Jr., The Hall number, the Hall index, and the total Hall number of a graph, Discrete Appl. Math. 94 (1999), 227-245] as a function of maximum degree.  相似文献   

18.
《Journal of Graph Theory》2018,87(3):347-355
Ther‐dynamic choosability of a graph G, written , is the least k such that whenever each vertex is assigned a list of at least k colors a proper coloring can be chosen from the lists so that every vertex v has at least neighbors of distinct colors. Let ch(G) denote the choice number of G. In this article, we prove when is bounded. We also show that there exists a constant C such that the random graph with almost surely satisfies . Also if G is a triangle‐free regular graph, then we have .  相似文献   

19.
Linear choosability of graphs   总被引:1,自引:0,他引:1  
A proper vertex coloring of a non-oriented graph G is linear if the graph induced by the vertices of any two color classes is a forest of paths. A graph G is linearly L-list colorable if for a given list assignment L={L(v):vV(G)}, there exists a linear coloring c of G such that c(v)∈L(v) for all vV(G). If G is linearly L-list colorable for any list assignment with |L(v)|?k for all vV(G), then G is said to be linearly k-choosable. In this paper, we investigate the linear choosability for some families of graphs: graphs with small maximum degree, with given maximum average degree, outerplanar and planar graphs. Moreover, we prove that deciding whether a bipartite subcubic planar graph is linearly 3-colorable is an NP-complete problem.  相似文献   

20.
Edge choosability of planar graphs without short cycles   总被引:1,自引:0,他引:1  
In this paper we prove that if G is a planar graph with △= 5 and without 4-cycles or 6-cycles, then G is edge-6-choosable. This consequence together with known results show that, for each fixed k ∈{3,4,5,6}, a k-cycle-free planar graph G is edge-(△ 1)-choosable, where △ denotes the maximum degree of G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号