首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Formylglycine‐generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site‐specific oxidation of a cysteine residue to the aldehyde‐containing amino acid Cα‐formylglycine (FGly). This non‐canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine‐generating enzyme (FGE) and the iron‐sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates.  相似文献   

2.
The identification and quantification of modified peptides are critical for the functional characterization of post-translational protein modifications (PTMs) to elucidate their biological function. Nowadays, quantitative mass spectrometry coupled with various bioinformatic pipelines has been successfully used for the determination of a wide range of PTMs. However, direct characterization of low abundant protein PTMs in bottom-up proteomic workflow remains challenging. Here, we present the synthesis and evaluation of tandem mass spectrometry tags (TMT) which are introduced via click-chemistry into peptides bearing alkyne handles. The fragmentation properties of the two mass tags were validated and used for screening in a model system and analysis of AMPylated proteins. The presented tags provide a valuable tool for diagnostic peak generation to increase confidence in the identification of modified peptides and potentially for direct peptide-PTM quantification from various experimental conditions.  相似文献   

3.
The chemical modification of proteins is a valuable technique in understanding the functions, interactions, and dynamics of proteins. Reactivity and selectivity are key issues in current chemical modification of proteins. The Michael addition‐like thiol–ene reaction is a useful tool that can be used to tag proteins with high selectivity for the solvent‐exposed thiol groups of proteins. To obtain insight into the bioconjugation of proteins with this method, a kinetic analysis was performed. New vinyl‐substituted pyridine derivatives were designed and synthesized. The reactivity of these vinyl tags with L ‐cysteine was evaluated by UV absorption and high‐resolution NMR spectroscopy. The results show that protonation of pyridine plays a key role in the overall reaction rates. The kinetic parameters were assessed in protein modification. The different reactivities of these vinyl tags with solvent‐exposed cysteine is valuable information in the selective labeling of proteins with multiple functional groups.  相似文献   

4.
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed “fluorine effect”. The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.  相似文献   

5.
Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so‐called cysteine‐reactive covalent capture tags (C3T), for the isolation of Cys‐containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine‐containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Cysteine represents an attractive target for peptide/protein modification due to the intrinsic high nucleophilicity of the thiol group and low natural abundance. Herein, a cleavable and tunable covalent modification approach for cysteine containing peptides/proteins with our newly designed aryl thioethers via a SNAr approach was developed. Highly efficient and selective bioconjugation reactions can be carried out under mild and biocompatible conditions. A series of aryl groups bearing different bioconjugation handles, affinity or fluorescent tags are well tolerated. By adjusting the skeleton and steric hindrance of aryl thioethers slightly, the modified products showed a tunable profile for the regeneration of the native peptides.

A cleavable and tunable covalent modification approach for cysteine by aryl thioethers via a SNAr approach was developed. The highly efficient and selective bioconjugation reactions can proceed under the mild and biocompatible conditions.  相似文献   

7.
Iodo- and ethynyl-containing bisalkylating bioconjugation agents 5 and 8 were achieved and allow the introduction of reactive unnatural substituents into proteins and peptides whilst the bioactive 3D structure is retained. Derivatives of the peptide hormone somatostatin bearing a single iodo or ethynyl group were prepared through intercalation into the disulfide bridge. For the first time, the exact reaction mechanism of the intercalation was elucidated by applying 2D NMR experiments and it was shown that, during the reaction, somatostatin diastereomers were formed. Site-directed modification of the ethynyl-modified peptide with a coumarin chromophore was achieved through a [1,3] dipolar Huisgen cycloaddition reaction; this suggests that such a derivative could serve as an attractive platform to prepare artificial somatostatin compound libraries. The biological activity and specificity of a representative modified somatostatin derivative was demonstrated and efficient receptor-mediated cell uptake occurred in a dose-dependent manner into receptor positive cells only. The iodo and ethynyl bioconjugation reagents presented herein could be applied for introducing such substituents into alternative peptides and proteins and, in principle, could facilitate the efficient design of a broad variety of artificial protein and peptide analogues with previously unknown bioactivities.  相似文献   

8.
Negative ion production from peptides and proteins was investigated by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M–H] ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5‐dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H]+ ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1‐14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Amino acids residues are commonly submitted to various physicochemical modifications occurring at physiological pH and temperature. Post‐translational modifications (PTMs) require comprehensive characterization because of their major influence on protein structure and involvement in numerous in vivo process or signaling. Mass spectrometry (MS) has gradually become an analytical tool of choice to characterize PTMs; however, some modifications are still challenging because of sample faint modification levels or difficulty to separate an intact peptide from modified counterparts before their transfer to the ionization source. Here, we report the implementation of capillary zone electrophoresis coupled to electrospray ionization tandem mass spectrometry (CZE‐ESI‐MS/MS) by the intermediate of a sheathless interfacing for independent and highly sensitive characterization of asparagine deamidation (deaN) and aspartic acid isomerization (isoD). CZE selectivity regarding deaN and isoD was studied extensively using different sets of synthetic peptides based on actual tryptic peptides. Results demonstrated CZE ability to separate the unmodified peptide from modified homologous exhibiting deaN, isoD or both independently with a resolution systematically superior to 1.29. Developed CZE‐ESI‐MS/MS method was applied for the characterization of monoclonal antibodies and complex protein mixture. Conserved CZE selectivity could be demonstrated even for complex samples, and foremost results obtained showed that CZE selectivity is similar regardless of the composition of the peptide. Separation of modified peptides prior to the MS analysis allowed to characterize and estimate modification levels of the sample independently for deaN and isoD even for peptides affected by both modifications and, as a consequence, enables to distinguish the formation of l ‐aspartic acid or d ‐aspartic acid generated from deaN. Separation based on peptide modification allowed, as supported by the ESI efficiency provided by CZE‐ESI‐MS/MS properties, and enabled to characterize and estimate studied PTMs with an unprecedented sensitivity and proved the relevance of implementing an electrophoretic driven separation for MS‐based peptide analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Specific interactions between cations and proteins have a strong impact on peptide and protein structure. Herein, we shed light on the nature of the underlying interactions, especially regarding effects on the polyamide backbone structure. This was done by comparing the conformational ensembles of model peptides in isolation and in the presence of either Li+ or Na+ by using state‐of‐the‐art density‐functional theory (including van der Waals effects) and gas‐phase infrared spectroscopy. These monovalent cations have a drastic effect on the local backbone conformation of turn‐forming peptides, by disruption of the hydrogen‐bonding networks, thus resulting in severe distortion of the backbone conformations. In fact, Li+ and Na+ can even have different conformational effects on the same peptide. We also assess the predictive power of current approximate density functionals for peptide–cation systems and compare to results with those of established protein force fields as well as high‐level quantum chemistry calculations (CCSD(T)).  相似文献   

11.
Lanthanide-binding tags (LBTs) are peptide sequences of up to 20 encoded amino acids that tightly and selectively complex lanthanide ions and can sensitize terbium (Tb3+) luminescence. On the basis of these properties, it was predicted that increasing the number of bound lanthanides would improve the capabilities of these tags. Therefore, using a structurally well-characterized single-LBT sequence as a starting point, a "double-LBT" (dLBT), which concatenates two lanthanide-binding motifs, was designed. Herein we report the generation of dLBT peptides and luminescence and NMR studies on a dLBT-tagged ubiquitin fusion protein. These lanthanide-bound constructs are shown to be improved luminescent tags with avid lanthanide binding and up to 3-fold greater luminescence intensity. NMR experiments were conducted on the ubiquitin construct, wherein bound paramagnetic lanthanides were used as alignment-inducing agents to gain residual dipolar couplings, which are valuable restraints for macromolecular structure determination. Together, these results indicate that dLBTs will be valuable chemical tools for biophysical applications leading to new approaches for studying the structure, function, and dynamics of proteins.  相似文献   

12.
Conformationally constrained non‐racemizing trifluoromethyl‐substituted lysine isosteres [(E)‐ and (Z)‐TCBLys] with charged side chains are presented as a new type of 19F‐NMR labels for peptide studies. Design of the labels, their synthesis, incorporation into peptides and experimental demonstration of their application for solid state NMR studies of membrane‐active peptides are described. A series of fluorine‐labeled analogues of the helical amphipathic antimicrobial peptide PGLa(Nle) was obtained, in which different lysine residues in the original peptide sequence were replaced, one at a time, by either (E)‐ or (Z)‐TCBLys. Antimicrobial activities of the synthesized analogues were practically the same as those of the parent peptide. The structural and orientational parameters of the helical PGLa(Nle) peptide in model bilayers, as determined using the novel labels confirmed and refined the previously known structure. (E)‐ and (Z)‐TCBLys, as a set of cationic 19F‐NMR labels, were shown to deliver structural information about the charged face of amphipathic peptides by solid state 19F‐NMR, previously inaccessible by this method.  相似文献   

13.
Fully unprotected peptide o‐aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o‐aminoanilides as a new type of crypto‐thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o‐aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q.  相似文献   

14.
The relative quantification and identification of proteins by matrix‐assisted laser desorption ionization time‐of‐flight MS is very important in /MS is very important in protein research and is usually conducted separately. Chemical N‐terminal derivatization with 4‐sulphophenyl isothiocyanate facilitates de novo sequencing analysis and accurate protein identification, while 18O labeling is simple, specific and widely applicable among the isotopic labeling methods used for relative quantification. In the present study, a method combining 4‐sulphophenyl isothiocyanate derivatization with 18O isotopic labeling was established to identify and quantify proteins simultaneously in one experiment. Reaction conditions were first optimized using a standard peptide (fibrin peptide) and tryptic peptides from the model protein (bovine serum albumin). Under the optimized conditions, these two independent labeling steps show good compatibility, and the linear relativity of quantification within the ten times dynamic range was stable as revealed by correlation coefficient analysis (R2 value = 0.998); moreover, precursor peaks in MS/MS spectrum could provide accurate quantitative information, which is usually acquired from MS spectrum, enabling protein identification and quantification in a single MS/MS spectrum. Next, this method was applied to native peptides isolated from spider venoms. As expected, the de novo sequencing results of each peptide matched with the known sequence precisely, and the measured quantitative ratio of each peptide corresponded well with the theoretical ratio. Finally, complex protein mixtures of spider venoms from male and female species with unknown genome information were analyzed. Differentially expressed proteins were successfully identified, and their quantitative information was also accessed. Taken together, this protein identification and quantification method is simple, reliable and efficient, which has a good potential in the exploration of peptides/proteins from species with unknown genome. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
By means of the reaction between a DOTA-NHS-ester bifunctional reagent and N-terminal peptides of proteins,and then chelation of lanthanide metal ions as tags,we established a novel method for the identification of N-terminal peptides of proteins and their relative quantification using metal-element-chelated tags coupled with mass spectrometry.The experimental results indicate that metal elements are able to completely label N-terminal peptides at the protein level.The N-terminal peptides are enriched as the peptides digested with trypsin are selectively eliminated by isothiocyanate-coupled silica beads.We successfully identified the N-terminal peptides of 158 proteins of Thermoanaerobacter tengcongensis incubated at 55 and 75°C,among which N-terminal peptides of 24 proteins are partially acetylated.Moreover,metal-element tags with high molecule weights make it convenient for N-terminal peptides consisting of less than 6 amino acids to be identified;these make up 55percent of the identified proteins.Finally,we developed a general approach for the relative quantification of proteins based on N-terminal peptides.We adopted lysozyme and ribonuclease B as model proteins;the correlation coefficients(R2)of the standard curves for the quantitative method were 0.9994 and 0.9997,respectively,with each concentration ratio ranging from0.1 to 10 and both relative standard derivations(RSD)measured at less than 5%.In T.tengcongensis at two incubation temperatures,80 proteins possess quantitative information.In addition,compared with the proteins of T.tengcongensis incubated at 55°C,in T.tengcongensis incubated at 75°C,7 proteins upregulate whereas 16 proteins downregulate,and most differential proteins are related to protein synthesis.  相似文献   

16.
We developed a concept for analysing carbon and nitrogen fluxes in microbial communities by employing protein‐based stable isotope probing (Protein‐SIP) in metabolic labelling experiments with stable isotope labelled substrates. For identification of microbial species intact protein profiling (IPP) can be used, whereas the assessment of their metabolic activity is achieved by shotgun mass mapping (SMM). Microbial cultures were grown on substrates containing 13C or 15N. For identification of species we tested both the IPP and the SMM approaches. Mass spectra (MALDI‐MS) were taken from mixtures of either intact proteins or peptides from tryptic digestion for generating species‐specific peak patterns. In the case of SMM, the fragmentation of peptides was additionally used to obtain sequence information for species identification. Mass spectra of peptide sequences allow calculation of the amount of 13C or 15N incorporation within peptides for determining metabolic activity of the specific species. The comparison of IPP and SMM revealed a higher robustness of species identification by SMM. In addition, the assessment of incorporation levels of 13C and 15N into peptides by SMM revealed a lower uncertainty (0.5–0.8 atom %) compared to IPP (6.4–8.9 atom %). The determination of metabolic activity and function of individual species by Protein‐SIP can help to analyse carbon and nitrogen fluxes within microbial communities. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low‐energy collision‐induced dissociation tandem mass spectrometry (MS/MS), mainly long b‐fragments are observed, limiting the possibility to determine variations such as amino acid variants or post‐translational modifications (PTMs) within the N‐terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann–Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O‐glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top‐down MS‐based method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Electron transfer dissociation (ETD) has become increasingly used in proteomic analyses due to its complementarity to collision-activated dissociation (CAD) and its ability to sequence peptides with post-translation modifications (PTMs). It was previously unknown, however, whether ETD would be compatible with a commonly employed quantification technique, isobaric tags for relative and absolute quantification (iTRAQ), since the fragmentation mechanisms and pathways of ETD differ significantly from CAD. We demonstrate here that ETD of iTRAQ labeled peptides produces c- and z -type fragment ions as well as reporter ions that are unique from those produced by CAD. Exact molecular formulas of product ions were determined by ETD fragmentation of iTRAQ-labeled synthetic peptides followed by high mass accuracy orbitrap mass analysis. These experiments revealed that ETD cleavage of the N-C(alpha) bond of the iTRAQ tag results in fragment ions that could be used for quantification. Synthetic peptide work demonstrates that these fragment ions provide up to three channels of quantification and that the quality is similar to that provided by beam-type CAD. Protein standards were used to evaluate peptide and protein quantification of iTRAQ labeling in conjunction with ETD, beam-type CAD, and pulsed Q dissociation (PQD) on a hybrid ion trap-orbitrap mass spectrometer. For reporter ion intensities above a certain threshold all three strategies provided reliable peptide quantification (average error < 10%). Approximately 36%, 8%, and 16% of scans identified fall below this threshold for ETD, HCD, and PQD, respectively. At the protein level, average errors were 2.3%, 1.7%, and 3.6% for ETD, HCD, and PQD, respectively.  相似文献   

19.
The synthesis and NMR elucidation of two novel pentacycloundecane (PCU)‐based peptides are reported. The PCU cage amino acids were synthesised as racemates and the incorporation of the cage amino acid with (S)‐natural amino acids produced diastereomeric peptides. The diastereomeric ‘cage’ peptides were separated using preparative HPLC and the NMR elucidation of these PCU containing peptides are reported for the first time. The 1H and 13C NMR spectra showed series of overlapping signals of the cage skeleton and that of the peptide, making it extremely difficult to resolve the structure using one‐dimensional NMR techniques only. The use of two‐dimensional NMR techniques proved to be a highly effective tool in overcoming this problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号