首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The properties of graphene nanoribbons are highly dependent on structural variables such as width, length, edge structure, and heteroatom doping. Therefore, atomic precision over all these variables is necessary for establishing their fundamental properties and exploring their potential applications. An iterative approach is presented that assembles a small and carefully designed molecular building block into monodisperse N‐doped graphene nanoribbons with different lengths. To showcase this approach, the synthesis and characterisation of a series of nanoribbons constituted of 10, 20 and 30 conjugated linearly‐fused rings (2.9, 5.3, and 7.7 nm in length, respectively) is presented.  相似文献   

2.
    
A bottom‐up approach toward stable and monodisperse segments of graphenes with a nitrogen‐doped zigzag edge is introduced. Exemplified by the so far unprecedented dibenzo‐9a‐azaphenalene (DBAPhen) as the core unit, a versatile synthetic concept is introduced that leads to nitrogen‐doped zigzag nanographenes and graphene nanoribbons.  相似文献   

3.
    
Novel nanographenes were prepared by a photochemical cyclodehydrochlorination (CDHC) reaction. Chlorinated precursors were irradiated in acetone in the presence of a base or in pure benzene and underwent multiple (up to four) regioselective cyclization reactions to provide rigid π‐conjugated molecules. Pure compounds were recovered in good yields by simple filtration at the end of the reaction. The CDHC reaction showed compatibility with both electron‐poor and electron‐rich substrates, thus allowing the synthesis of pyridine‐ and thiophene‐fused nanographenes. It also enabled the synthesis of sterically hindered contorted π‐conjugated molecules without causing full aromatization. A kinetic study showed that the CDHC reaction under the conditions used is a very fast process, and some reactions are completed within minutes. The CDHC reaction thus shows great potential as an alternative to other reactions involving harsher conditions for the preparation of nanographenes.  相似文献   

4.
    
Three unprecedented helical nanographenes ( 1 , 2 , and 3 ) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X‐ray crystallographic analysis. The embedded azulene unit in 2 possesses a record‐high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis‐spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps ( 2 : 1.88 eV; 3 : 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in‐situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.  相似文献   

5.
6.
    
Density functional theory calculations were implemented to expand the knowledge about graphyne and its interaction with polycyclic aromatic hydrocarbons (PAHs). Due to the porous character of graphyne, the adsorption strength of PAHs onto graphyne surfaces is expected to be lower with respect to graphene (a perfect π‐extended system). However, there are not quantitative evidences for this assumption. This work shows that the adsorption strength of adsorbed PAHs onto γ‐graphyne nanosheets (GY) is weakened in 12 ? 23% with respect to the adsorption onto graphene, with a decrease of 10 ? 20% in the dispersive interactions. The adsorption energies (in eV) of the GY–PAH systems can be straightforward obtained as E ads/eV≈0.033N H + 0.031N C, where N H and N C is the number of H and C atoms in the aromatic molecule, respectively. This equation predicts the binding energy of graphene–graphyne bilayers with a value of ~31 meV/atom. Analysis of the electronic properties shows that PAHs behaves as n‐dopants for GY, introducing electrons in GY and also reducing its bandgap in up to ~0.5 eV. Strong acceptor or donor substituted PAHs decrease the bandgap of γ‐graphyne in up to ~0.8 eV, with changes in its valence or conduction band, depending on the chemical nature of the adsorbate. Finally, these data will serve for future studies related to the bandgap engineering of graphyne surfaces by nonaggressive molecular doping, and for the development of graphyne‐based materials with potential applications in the removal of persistent aromatic pollutants.  相似文献   

7.
Providing a quantitative understanding of the thermodynamics involved in molecular adsorption and self‐assembly at a nanostructured carbon material is of fundamental importance and finds outstanding applications in the graphene era. Here, we study the effect of edge perchlorination of coronene, which is a prototypical polyaromatic hydrocarbon, on the binding affinity for the basal planes of graphite. First, by comparing the desorption barrier of hydrogenated versus perchlorinated coronene measured by temperature‐programmed desorption, we quantify the enhancement of the strength of physisorption at the single‐molecule level though chlorine substitution. Then, by a thermodynamic analysis of the corresponding monolayers based on force‐field calculations and statistical mechanics, we show that perchlorination decreases the free energy of self‐assembly, not only enthalpically (by enhancing the strength of surface binding), but also entropically (by decreasing the surface concentration). The functional advantage of a chemically modulated 2D self‐assembly is demonstrated in the context of the molecule‐assisted liquid‐phase exfoliation of graphite into graphene.  相似文献   

8.
    
Herein, we report the design and synthesis of a series of novel cationic nitrogen‐doped nanographenes (CNDNs) with nonplanar geometry and axial chirality. Single‐crystal X‐ray analysis reveals helical and cove‐edged structures. Compared to their all‐carbon analogues, the frontier orbitals of the CNDNs are energetically lower lying, with a reduced optical energy gap and greater electron‐accepting behavior. Cyclic voltammetry shows all the derivatives to undergo quasireversible reductions. In situ spectroelectrochemical studies prove that, depending on the number of nitrogen dopants, either neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) are formed upon reduction. The concept of cationic nitrogen doping and introducing helicity into nanographenes paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons with cationic nitrogen dopants.  相似文献   

9.
10.
The application of differential scanning calorimetry (DSC) for purity determination is well documented in literature and is used amongst others in the analysis of pure organic crystalline compounds. The aim of this work is to examine whether the DSC method for purity determination consistently produces values for the purity of polycyclic aromatic hydrocarbons (PAHs) which are sufficiently accurate as required for the certification of reference materials. For this purpose, 34 different existing PAH certified reference materials were tested. The DSC results are shown to be consistent with the results obtained by other methods assessing the organic impurities content in PAHs, like gas chromatography (GC), high performance liquid chromatography (HPLC) and mass spectrometry. Significant differences between the measured values and the certified purity values were observed only in a limited number of cases.  相似文献   

11.
    
A water‐soluble surfactant consisting of hexa‐peri‐hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self‐assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L?1 containing 2–6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100–500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements.  相似文献   

12.
    
Conversion of hazardous compounds to value-added chemicals using clean energy possesses massive industrial interest. This applies especially to the hazardous compounds that are frequently released in daily life. In this work, a S-scheme photocatalyst is optimized by rational loading of carbon quantum dots (CQDs) during the synthetic process. As a bridge, the presence of CQDs between TiO2 and CdIn2S4 improves the electron extraction from TiO2 and supports the charge transport in S-scheme. Thanks to this, the TiO2/CQDs/CdIn2S4 presents outstanding photoactivity in converting the polycyclic aromatic hydrocarbons (PAHs) released by cigarette to value-added benzaldehyde. The optimized photocatalyst performs 87.79% conversion rate and 72.76% selectivity in 1 h reaction under a simulated solar source, as confirmed by FT-IR and GC-MS. A combination of experiments and theoretical calculations are conducted to demonstrate the role of CQDs in TiO2/CQDs/CdIn2S4 toward photocatalysis.  相似文献   

13.
    
Due to their unique chemical and physical properties, zigzag-edged nanographenes have attracted increasing interest in recent years. Herein, a novel zigzag-edged nanographene ( 6 ) containing a [7]helicene subunit was designed and synthesized. However, because of the high reactivities of zigzag edges, compound 1 with a diketone structure was obtained owing to the oxidation of 6 . The helical carbon skeleton of 1 is unambiguously revealed by single-crystal X-ray crystallography analysis. The photophysical properties of the precursor and helical diketone 1 are studied by UV-vis absorption spectroscopy. The electrochemical property of 1 is investigated by cyclic voltammetry, which was further studied by density functional theory (DFT) calculations (ΔEgCal=2.94 eV). The work reported here not only represents the synthesis of an unprecedented [7]helicene-embedded nanographene, but also provides the possibility for the synthesis of helical nanographenes with rich zigzag edges.  相似文献   

14.
    
An electrochemical sensor for detection of three monohydroxylated polycyclic aromatic hydrocarbons (OH?PAHs) was fabricated by electrochemical reduction of graphene oxide (E‐rGO) on screen‐printed electrode (SPE). The E‐rGO film presents typical wrinkled structure with porous and cavity‐like nanostructure, providing large surface area, effective π‐electron system and high electrical conductivity. The developed E‐rGO/SPE sensor exhibits outstanding sensing performance for the target OH?PAHs, 2‐hydroxynaphthalene, 3‐hydroxyphenanthrene, and 1‐hydroxypyrene, within a linear range varying from 50–800 nM, 50–1150 nM, and 100–1000 nM, and with a limit of detection (LOD) of 10.1 nM, 15.3 nM, and 20.4 nM (S/N=3), respectively. The electrochemical sensor possesses excellent stability, acceptable reproducibility, and good anti‐interference ability. Additionally, the proposed sensor can be applied to the analysis of OH?PAHs in the urine samples with recoveries of 98.1–105.9 %.  相似文献   

15.
    
The chiral self-assembly of trispentahelicene propellers on a gold surface has been investigated in ultrahigh vacuum by means of scanning tunneling microscopy and time-of-flight secondary ion mass spectrometry. The trispentahelicene propellers aggregate into mirror domains with an enantiomeric ratio of 2 : 1. Thermally induced cyclodehydrogenation leads to planarization into nanographenes, which self-assemble into closed-packed layers with two different azimuths. Further treatment induces in part dimerization and trimerization by intermolecular cyclodehydrogenation.  相似文献   

16.
    
The development of carbon nanobelts and related belt-shaped polycyclic aromatic hydrocarbons has gained momentum in recent years. This Minireview focuses on the synthetic strategies used in constructing these aesthetically appealing molecular nanocarbons. Examples of carbon nanobelts and related belt-shaped polycyclic aromatic hydrocarbons reported in recent years as well as some representative synthetic attempts in earlier times are discussed.  相似文献   

17.
Characterization of pitches by thermal analysis techniques is highly relevant to the practical use of these materials, as they undergo heat treatments in all of their utilization processes. The aim of this work was to improve the interpretation of the complex DTA curves of pitches by comparison with model compounds. For this, TG/DTG/DTA was used to study under identical conditions the pyrolysis of a petroleum pitch and a coal tar pitch as well as a number of polycyclic aromatic hydrocarbons. Results were interpreted as a function of the molecular structure, pyrolysis reactivity and graphitizability of cokes from the hydrocarbons. It is concluded that condensation and polymerization, which are the most likely exothermal reactions predominant in petroleum pitches, indicate the presence therein of reactive molecules. Alternatively, endothermal phenomena such as distillation, depolymerization and cracking, predominant in coal tar pitches, suggest the presence of light, little reactive aromatic molecules.Financial support from DGICYT (project PB87-0456) is gratefully acknowledged.  相似文献   

18.
    
The design of charge separation sites under illumination in semiconductors is a standing challenge for their utilization as photo(electro)catalysts. Here, the synthesis of modified carbon nitride materials (CNs) with donor–acceptor (D–A) domains, with altering electronic structure, is reported. To do so, new monomers based on polycyclic aromatic hydrocarbons (PAH)-substituted 1,3,5-triazine were designed, which were then embedded within cyanuric acid–melamine supramolecular assemblies to form CN precursors. The conjugation degree of PAHs was systematically changed, from single benzene ring up to pyrene unit, elucidating the role of the conjugation degree on the morphology, structure and electronic properties as well as photo(electro)catalytic activity. The careful design of the D–A sites results in excellent photocatalytic activity as well as long-term stability for the hydrogen evolution reaction. Moreover, PAH–CNs films exhibit enhanced charge separation, optical absorption, electrochemical surface area and electronic conductivity, leading to an outstanding photoelectrochemical (PEC) activity compared to pristine CN.  相似文献   

19.
    
A synthetic route towards a novel hexabenzocoronene-based helical nanographene motif was developed. A hexaphenylbenzene precursor was therefore designed, which cannot undergo, due to steric restrictions, a complete planarization reaction. This precursor was transformed under oxidative cyclodehydrogenation conditions to a π-extended [5]helicene, which was fully characterized including X-ray diffraction analysis.  相似文献   

20.
    
Dodecaphenyltetracene ( 4 ), the largest perphenylacene yet prepared, was synthesized from known tetraphenylfuran, hexaphenylisobenzofuran, and 1,2,4,5‐tetrabromo‐3,6‐diphenylbenzene in three steps. The X‐ray structure of the deep red, highly luminescent 4 shows it to be a D2‐symmetric molecule with an end‐to‐end twist of 97°. The central acene is encapsulated by the peripheral phenyl substituents, and as a result, the molecule is relatively unreactive and even displays reversible electrochemical oxidation and reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号