首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (?) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications.  相似文献   

2.
Traditionally, it is believed that three‐dimensional transport networks are preferable to those of lower dimensions. We demonstrate that inter‐layer electronic couplings may result in a drastic decrease of charge mobilities by utilizing field‐effect transistors (FET) based on two phases of titanyl phthalocyanine (TiOPc) crystals. The α‐phase crystals with electronic couplings along two dimensions show a maximum mobility up to 26.8 cm2 V?1 s?1. In sharp contrast, the β‐phase crystals with extra significant inter‐layer electronic couplings show a maximum mobility of only 0.1 cm2 V?1 s?1. Theoretical calculations on the bulk crystals and model slabs reveal that the inter‐layer electronic couplings for the β‐phase devices will diminish remarkably the device charge transport abilities owing to the coupling direction perpendicular to the current direction. This work provides new insights into the impact of the dimensionality and directionality of the packing arrangements on charge transport in organic semiconductors.  相似文献   

3.
Organic polymers are usually amorphous or possess very low crystallinity. The metal complexes of organic polymeric ligands are also difficult to crystallize by traditional methods because of their poor solubilities and their 3D structures can not be determined by single‐crystal X‐ray crystallography owing to a lack of single crystals. Herein, we report the crystal structure of a 1D ZnII coordination polymer fused with an organic polymer ligand made in situ by a [2+2] cycloaddition reaction of a six‐fold interpenetrated metal–organic framework. It is also shown that this organic polymer ligand can be depolymerized in a single‐crystal‐to‐single‐crystal (SCSC) fashion by heating. This strategy could potentially be extended to make a range of monocrystalline metal organopolymeric complexes and metal–organic organopolymeric hybrid materials. Such monocrystalline metal complexes of organic polymers have hitherto been inaccessible for materials researchers.  相似文献   

4.
Weak intermolecular interaction in organic semiconducting molecular crystals plays an important role in molecular packing and electronic properties. Here, four five‐ring‐fused isomers were rationally designed and synthesized to investigate the isomeric influence of linear and angular shapes in affecting their molecular packing and resultant electronic properties. Single‐crystal field‐effect transistors showed mobility order of 5,7‐ICZ (3.61 cm2 V?1 s?1) >5,11‐ICZ (0.55 cm2 V?1 s?1) >11,12‐ICZ (ca. 10?5 cm2 V?1 s?1) and 5,12‐ICZ (ca. 10?6 cm2 V?1 s?1). Theoretical calculations based on density functional theory (DFT) and polaron transport model revealed that 5,7‐ICZ can reach higher mobilities than the others thanks to relatively higher hole transfer integral that links to stronger intermolecular interaction due to the presence of multiple NH???π and CH???π(py) interactions with energy close to common NH???N hydrogen bonds, as well as overall lower hole‐vibrational coupling owing to the absence of coupling of holes to low frequency modes due to better π conjugation.  相似文献   

5.
Non‐chlorinated solvents are highly preferable for organic electronic processing due to their environmentally friendly characteristics. Four different halogen‐free solvents, tetrafuran, toluene, meta‐xylene and 1,2,4‐trimethylbenzene, were selected to fabricate n‐channel organic thin film transistors (OTFTs) based on 3‐hexylundecyl substituted naphthalene diimides fused with (1,3‐dithiol‐2‐ylidene)malononitrile groups (NDI3HU‐DTYM2). The OTFTs based on NDI3HU‐DTYM2 showed electron mobility of up to 1.37 cm2·V?1·s?1 under ambient condition. This is among the highest device performance for n‐channel OTFTs processed from halogen‐free solvents. The different thin‐film morphologies, from featureless low crystalline morphology to well‐aligned nanofibres, have a great effect on the device performance. These results might shed some light on solvent selection and the resulting solution process for organic electronic devices.  相似文献   

6.
This study presents a new class of conjugated polycyclic molecules that contain seven‐membered rings, detailing their synthesis, crystal structures and semiconductor properties. These molecules have a nearly flat C6‐C7‐C6‐C7‐C6 polycyclic framework with a p‐quinodimethane core. With field‐effect mobilities of up to 0.76 cm2 V?1 s?1 as measured from solution‐processed thin‐film transistors, these molecules are alternatives to the well‐studied pentacene analogues for applications in organic electronic devices.  相似文献   

7.
Increasing the length of N‐heteroacenes or their analogues is highly desirable because such materials could have great potential applications in organic electronics. In this report, the large π‐conjugated N‐heteroquinone 6,10,17,21‐tetra‐((triisopropylsilyl)ethynyl)‐5,7,9,11,16,18,20,22‐octaazanonacene‐8,19‐dione (OANQ) has been synthesized and characterized. The as‐prepared OANQ shows high stability under ambient conditions and has a particularly low LUMO level, which leads to it being a promising candidate for air‐stable n‐type field‐effect transistors (FETs). In fact, FET devices based on OANQ single crystals have been fabricated and an electron mobility of up to 0.2 cm2 V?1 s?1 under ambient conditions is reported. More importantly, no obvious degradation was observed even after one month. Theoretical calculations based on the single crystal are consistent with the measured mobility.  相似文献   

8.
Research on structure–property relationships in distyrylarylene derivatives is far behind their wide applications in optoelectronic devices due to the absence of crystal structure information. Herein, the single crystals of 4,4′‐bis(2‐thienylvinyl)biphenyl ( 1 ) and 4,4′‐bis(2‐thieno[3,2‐b]thienylvinyl)biphenyl ( 2 ) were successfully grown by the vapor transport method. Both molecules adopt the typical herringbone packing motif. However, the intermolecular C? H???π interaction in compound 2 is much stronger than that in compound 1 . The correlations of interchain interaction with film morphology, optical and electronic properties were studied. Compound 2 formed higher crystalline films with (001) and (111) orientations. The organic field‐effect transistor properties of both materials were investigated. Compound 2 showed better performance with a hole mobility higher than 0.01 cm2 V?1 s?1 and an on/off current ratio over 106. These results reveal that the intensity of C? H???π interactions can exert dramatic influences on the optical and electronic properties of distyrylarylene‐based materials.  相似文献   

9.
Organic single crystals are ideal candidates for high‐performance photovoltaics due to their high charge mobility and long exciton diffusion length; however, they have not been largely considered for photovoltaics due to the practical difficulty in making a heterojunction between donor and acceptor single crystals. Here, we demonstrate that extended single‐crystalline heterojunctions with a consistent donor‐top and acceptor‐bottom structure throughout the substrate can be simply obtained from a mixed solution of C60 (acceptor) and 3,6‐bis(5‐(4‐n‐butylphenyl)thiophene‐2‐yl)‐2,5‐bis(2‐ethylhexyl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione (donor). 46 photovoltaic devices were studied with the power conversion efficiency of (0.255±0.095) % under 1 sun, which is significantly higher than the previously reported value for a vapor‐grown organic single‐crystalline donor–acceptor heterojunction (0.007 %). As such, this work opens a practical avenue for the study of organic photovoltaics based on single crystals.  相似文献   

10.
Organic field-effect transistors are of great importance to electronic devices. With the emergence of various preparation techniques for organic semiconductor materials, the device performance has been improved remarkably. Among all of the organic materials, single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement. Based on organic single crystals, alignment and patterning techniques are essential for practical industrial application of electronic devices. In this review, recently developed methods for crystal alignment and patterning are described.  相似文献   

11.
We demonstrate herein an all‐optical switch based on stimuli‐responsive and photochromic‐free metal–organic framework (HKUST‐1). Ultrafast near‐infrared laser pulses stimulate a reversible 0.4 eV blue shift of the absorption band with up to 200 s?1 rate due to dehydration and concomitant shrinking of the structure‐forming [Cu2C4O8] cages of HKUST‐1. Such light‐induced switching enables the remote modulation of intensities of photoluminescence of single crystals of HKUST‐1 as well visible radiation passing through the crystal by 2 order of magnitude. This opens up the possibility of utilyzing stimuli‐responsive MOFs for all‐optical data processing devices.  相似文献   

12.
Organic crystals constructed by pi-conjugated molecules have been paid great attention to in the field of organic optoelectronic materials. The superiorities of these organic crystal materials, such as high thermal stability, highly ordered structure, and high carrier mobility over the amorphous thin film ma-terials, make them attractive candidates for optoelectronic devices. Single crystal with definite struc-ture provides a model to investigate the basic interactions between the molecules (supramolecular interaction), and the relationship between molecular stacking modes and optoelectronic performance (luminescence and carrier mobility). Through modulating molecular arrangement in organic crystal, the luminescence efficiency of organic crystal has exceeded 80% and carrier mobility has been up to the level of 10 cm2·V?1·s?1. Amplified stimulated emission phenomena have been observed in many crys-tals. In this paper, we will emphatically introduce the progress in optoelectronic functional organic crystals and some correlative principle.  相似文献   

13.
Metal–organic polyhedra (MOPs) or frameworks (MOFs) based on Cr3+ are notoriously difficult to synthesize, especially as crystals large enough to be suitable for characterization of the structure or properties. It is now shown that the co‐existence of In3+ and Cr3+ induces a rapid crystal growth of large single crystals of heterometallic In‐Cr‐MOPs with the [M8L12] (M=In/Cr, L=dinegative 4,5‐imidazole‐dicarboxylate) cubane‐like structure. With a high concentration of protons from 12 carboxyl groups decorating every edge of the cube and an extensive H‐bonded network between cubes and surrounding H2O molecules, the newly synthesized In‐Cr‐MOPs exhibit an exceptionally high proton conductivity (up to 5.8×10?2 S cm?1 at 22.5 °C and 98 % relative humidity, single crystal).  相似文献   

14.
Chlorination of π‐conjugated backbones is garnering great interest because of fine‐tuning electronic properties of conjugated materials for organic devices. Herein we report a synthesis of thiophene‐based diketopyrrolopyrrole (DPP) dimers and their chlorinated counterparts by introducing a chlorine atom in the outer thiophene ring to investigate the influence of the chlorination on charge transport. The backbone chlorination lowers both the HOMO and the LUMO of the dimers and leads to a blue‐shift of maximum absorption in compared to unsubstituted counterparts. X‐ray analysis reveals that the chlorine atom prompts the outer thiophene ring out of the planarity of the backbone with a relatively large torsional angle. The chlorinated dimers exhibit slipped one‐dimensional packing decorated with multiple intermolecular interactions, because of a combination of a negative inductive effect and a positive mesomeric effect of the halogen atom, which might facilitate charge transport within the oligomeric backbones. The mobility in the single‐crystal OFET devices of the chlorinated dimers is up to 1.5 cm2 V?1 s?1, which is two times higher than that of the non‐chlorinated DPP dimers. Our results indicate that the chlorine atom plays a key role in directing non‐covalent interactions to lock the slipped stacks, enabling electronic coupling between adjacent molecules for efficient charge transport. In addition, our results also demonstrate that these DPP dimers with straight n‐octyl chains exhibit higher mobilities than the dimers with branched 2‐ethylhexyl chains.  相似文献   

15.
Organic single crystals with elastic bending capability and potential applications in flexible devices and sensors have been elucidated. Exploring the temperature compatibility of elasticity is essential for defining application boundaries of elastic materials. However, related studies have rarely been reported for elastic organic crystals. Now, an organic crystal displays elasticity even in liquid nitrogen (77 K). The elasticity can be maintained below ca. 150 °C. At higher temperatures, the heat setting property enables us to make various shapes of crystalline fibers based on this single kind of crystal. Through detailed crystallographic analyses and contrast experiments, the mechanisms behind the unusual low‐temperature elasticity and high‐temperature heat setting are disclosed.  相似文献   

16.
Anisotropic organic molecular construction and packing are crucial for the optoelectronic properties of organic crystals. Two‐dimensional (2D) organic crystals with regular morphology and good photon confinement are potentially suitable for a chip‐scale planar photonics system. Herein, through the bottom‐up process, 2D halogen‐bonded DPEpe‐F4DIB cocrystals were fabricated that exhibit an asymmetric optical waveguide with the optical‐loss coefficients of RBackward=0.0346 dB μm?1 and RForward=0.0894 dB μm?1 along the [010] crystal direction, which can be attributed to the unidirectional total internal reflection caused by the anisotropic molecular packing mode. Based on this crystal direction‐oriented asymmetric photon transport, these as‐prepared 2D cocrystals have been demonstrated as a microscale optical logic gate with multiple input/out channels, which will offer potential applications as the 2D optical component for the integrated organic photonics.  相似文献   

17.
Pentacyanocyclopentadienide (PCCp?), a stable π‐electronic anion, provided various ion‐pairing assemblies in combination with various cations. PCCp?‐based assemblies exist as single crystals and mesophases owing to interionic interactions with π‐electronic and aliphatic cations with a variety of geometries, substituents, and electronic structures. Single‐crystal X‐ray analysis revealed that PCCp? formed cation‐dependent arrangements with contributions from charge‐by‐charge and charge‐segregated assembly modes for ion pairs with π‐electronic and aliphatic cations, respectively. Furthermore, some aliphatic cations gave dimension‐controlled organized structures with PCCp?, as observed in the mesophases, for which synchrotron XRD analysis suggested the formation of charge‐segregated modes. Noncontact evaluation of conductivity for (C12H25)3MeN+ ? PCCp? films revealed potential hole‐transporting properties, yielding a local‐scale hole mobility of 0.4 cm2 V?1 s?1 at semiconductor–insulator interfaces.  相似文献   

18.
A series of fused thiophenes composed of fused α‐oligothiophene units as building blocks, end‐capped with either styrene or 1‐pentyl‐4‐vinylbenzene groups, has been synthesized through Stille coupling reactions. The compounds have been fully characterized by means of 1H NMR spectrometry, high‐resolution mass spectrometry, and elemental analysis. The molecules present a transtrans configuration between their double bonds, which has been verified and confirmed by Fourier‐transform infrared spectroscopy and single‐crystal X‐ray diffraction analysis. The X‐ray crystal structures showed π–π overlap and sulfur–sulfur interactions between the adjacent molecules. The decomposition temperatures were all found to be above 300 °C, indicating that compounds of this series possess excellent thermal stability. The fact that no phase transition occurs at low temperature indicates that they should be well‐suited for application in devices. Moreover, they possess low HOMO energy levels, based on cyclic voltammetry measurements, and suitable energy gaps, as determined from their thin‐film UV/Vis spectra. Thin‐film X‐ray diffraction analysis and atomic force microscopy revealed high crystallinity on supporting substrates. In addition, as the substrate temperature has a significant influence on the morphology and the degree of crystallinity, the device performance could be optimized by varying the substrate temperature. These materials were found to exhibit optimal field‐effect performance, with a mobility of 0.17 cm2 V?1 s?1 and an on/off ratio of 105, at a substrate temperature of 70 °C.  相似文献   

19.
Together with high conductivity, high flexibility is an important property required for next generation organic electronic components. Both properties are difficult to achieve together especially when the components are crystalline because of the intrinsic high brittleness of organic molecular crystals. We report an organic radical crystal system that has both high flexibility and high conductivity. The crystal consists of 9,10‐bis(phenylethynyl)anthracene radical cation ( BPEA.+ ) units, and shows flexibility under pressure with high conductivity in ambient condition exhibiting average conductivity of 2.68 S cm?1 when normal linear shape, as well as 2.43 S cm?1 when bent. The structural analysis reveals that both a short π–π distance (3.290 Å) between BPEA.+ units that are aligned along the crystal length direction, and the presence of PF6? counter ions induce flexibility and high electrical conductivity.  相似文献   

20.
A novel silicon‐based compound, 10‐phenyl‐2′‐(triphenylsilyl)‐10H‐spiro[acridine‐9,9′‐fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton‐blocking material in blue phosphorescent organic light‐emitting diodes (PhOLEDs). Accordingly, blue‐emitting devices with iridium(III) bis[(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll‐off. In particular, 44.0 cd A?1 (41.3 lm W?1) at 100 cd m?2 and 41.9 cd A?1 (32.9 lm W?1) at 1000 cd m?2 were achieved when SSTF was used as host material; 28.1 lm W?1 at 100 cd m?2 and 20.6 lm W?1 at 1000 cd m?2 were achieved when SSTF was used as exciton‐blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号