首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polymerization‐induced self‐assembly (PISA) was employed to compare the self‐assembly of different amphiphilic block copolymers. They were obtained by emulsion polymerization of styrene in water using hydrophilic poly(N‐acryloylmorpholine) (PNAM)‐based macromolecular RAFT agents with different structures. An average of three poly (ethylene glycol acrylate) (PEGA) units were introduced either at the beginning, statistically, or at the end of a PNAM backbone, resulting in formation of nanometric vesicles and spheres from the two former macroRAFT architectures, and large vesicles from the latter. Compared to the spheres obtained with a pure PNAM macroRAFT agent, composite macroRAFT architectures promoted a dramatic morphological change. The change was induced by the presence of PEGA hydrophilic side‐chains close to the hydrophobic polystyrene segment.  相似文献   

3.
Nanostructured polyion complexes (PICs) are appealing in biomaterials applications. Yet, conventional assembly suffers from the weakness in scale‐up and reproducibility. Only a few low‐dimensional PICs are available to date. Herein we report an efficient and scalable strategy to prepare libraries of low‐dimensional PICs. It involves a visible‐light‐mediated RAFT polymerization of ionic monomer in the presence of a polyion of the opposite charge at 5–50 % w/w total solids concentration in water at 25 °C, namely, polymerization‐induced electrostatic self‐assembly (PIESA). A Vesicle, multi‐compartmental vesicle, and large‐area unilamellar nanofilm can be achieved in water. A long nanowire and porous nanofilm can be prepared in methanol/water. An unusual unimolecular polyion complex (uPIC)‐sphere‐branch/network‐film transition is reported. This green chemistry offers a general platform to prepare various low‐dimensional PICs with high reproducibility on a commercially viable scale under eco‐friendly conditions.  相似文献   

4.
Nanostructures derived from amphiphilic DNA–polymer conjugates have emerged prominently due to their rich self‐assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA–polymer nanostructures of various shapes by leveraging polymerization‐induced self‐assembly (PISA) for polymerization from single‐stranded DNA (ssDNA). A “grafting from” protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA–polymer conjugates and DNA–diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA–polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye‐labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA–polymer nanostructures.  相似文献   

5.
The nucleophilic living ring‐opening polymerization of N‐substituted glycine N‐carboxyanhydrides using solid‐phase synthesis resins is reported. By variation of experimental parameters, products with near Poisson distributions are obtained. As opposed to reversible deactivation radical polymerization, the living polymerization is demonstrated to be viable to high monomer conversion and through multiple monomer addition steps. Successful preparation of a multiblock copolypeptoid is proof for a highly living and robust character of the solid‐phase peptoid polymerization.

  相似文献   


6.
We report the straightforward, time‐efficient synthesis of radical core–shell nanoparticles (NPs) by polymerization‐induced self‐assembly. A nitroxide‐containing hydrophilic macromolecular precursor was prepared by ring‐opening metathesis copolymerization of norbornenyl derivatives of TEMPO and oligoethylene glycol and was chain‐extended in situ with norbornene in ethanolic solution, leading to simultaneous amphiphilic block copolymer formation and self‐assembly. Without any intermediate purification from the monomers to the block copolymers, radical NPs with tunable diameters ranging from 10 to 110 nm are obtained within minutes at room temperature. The high activity of the radical NPs as chemoselective and homogeneous, yet readily recyclable catalysts is demonstrated through oxidation of a variety of alcohols and recovery by simple centrifugation. Furthermore, the NPs show biocompatibility and antioxidant activity in vitro.  相似文献   

7.
Water‐soluble and amphiphilic polymers are of great interest to industry and academia, as they can be used in applications such as biomaterials and drug delivery. Whilst ring‐opening metathesis polymerization (ROMP) is a fast and functional group tolerant methodology for the synthesis of a wide range of polymers, its full potential for the synthesis of water‐soluble polymers has yet to be realized. To address this, we report a general strategy for the synthesis of block copolymers in aqueous milieu using a commercially available ROMP catalyst and a macroinitiator approach. This allows for excellent control in the preparation of block copolymers in water. If the second monomer is chosen such that it forms a water‐insoluble polymer, polymerization‐induced self‐assembly (PISA) occurs and a variety of self‐assembled nano‐object morphologies can be accessed.  相似文献   

8.
The last decade has witnessed rapid developments in aggregation‐induced emission (AIE). In contrast to traditional aggregation, which causes luminescence quenching (ACQ), AIE is a reverse phenomenon that allows robust luminescence to be retained in aggregated and solid states. This makes it possible to fabricate various highly efficient luminescent materials, which opens new paradigms in a number of fields, such as imaging, sensing, medical therapy, light harvesting, light‐emitting devices, and organic electronic devices. Of the various important features of AIE molecules, their self‐assembly behavior is very attractive because the formation of a well‐defined emissive nanostructure may lead to advanced applications in diverse fields. However, due to the nonplanar topology of AIEgens, it is not easy for them to self‐assemble into well‐defined structures. To date, some strategies have been proposed to achieve the self‐assembly of AIEgens. Herein, we summarize the most recent approaches for the self‐assembly of AIE molecules. These approaches can be sorted into two classes: 1) covalent molecular design and 2) noncovalent supramolecular interactions. We hope this will inspire more excellent work in the field of AIE.  相似文献   

9.
After a brief history that positions polymerization‐induced self‐assembly (PISA) in the field of polymer chemistry, this Review will cover the fundamentals of the PISA mechanism. Furthermore, this Review will also give an overview of some of the features and limitations of RAFT‐mediated PISA in terms of the choice of the components involved, the nature of the nanoobjects that can be obtained and how the syntheses can be controlled, as well as some potential applications.  相似文献   

10.
Photo‐crosslinkable and amine‐containing block copolymer nanoparticles are synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization‐induced self‐assembly of a multifunctional core‐forming monomer, 2‐((3‐(4‐(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2‐hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon–carbon double bonds upon UV irradiation, the as‐prepared block copolymer nanoparticles are readily stabilized by photo‐crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles.

  相似文献   


11.
Poly(ethylene oxide) (PEO) with dithiocarbamate chain ends (PEO–SC(=S)?N(CH3)Ph and PEO–SC(=S)?NPh2, named PEO‐1 and PEO‐2 , respectively) were used as macromolecular chain‐transfer agents (macro‐CTAs) to mediate the reversible addition–fragmentation chain transfer (RAFT) polymerization of ethylene in dimethyl carbonate (DMC) under relatively mild conditions (80 °C, 80 bar). While only a slow consumption of PEO‐1 was observed, the rapid consumption of PEO‐2 led to a clean chain extension and the formation of a polyethylene (PE) segment. Upon polymerization, the resulting block copolymers PEO‐b‐PE self‐assembled into nanometric objects according to a polymerization‐induced self‐assembly (PISA).  相似文献   

12.
Hierarchical solution self‐assembly has become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despite great progress, it is still highly challenging to prepare hierarchical self‐assemblies on a large scale because the self‐assembly processes are generally performed at high dilution. Now, an emulsion‐assisted polymerization‐induced self‐assembly (EAPISA) method with the advantages of in situ self‐assembly, scalable preparation, and facile functionalization was used to prepare hierarchical multiscale sea urchin‐like aggregates (SUAs). The obtained SUAs from amphiphilic alternating copolymers have a micrometer‐sized rattan ball‐like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can capture model proteins effectively at an ultra‐low concentration (ca. 10 nm ) after functionalization with amino groups through click copolymerization.  相似文献   

13.
Polymerization‐induced self‐assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so‐called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub‐10 nm surface features. By varying the degree of polymerization of the stabilizer and core‐forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre‐organization of copolymer chains within sterically‐stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution‐cast molecularly‐dissolved copolymer chains.  相似文献   

14.
One‐dimensional (1D) self‐assemblies of nanocrystals are of interest because of their vectorial and polymer‐like dynamic properties. Herein, we report a simple method to prepare elongated assemblies of semiconductor nanorods (NRs) through end‐to‐end self‐assembly. Short‐chained water‐soluble thiols were employed as surface ligands for CdSe NRs having a wurtzite crystal structure. The site‐specific capping of NRs with these ligands rendered the surface of the NRs amphiphilic. The amphiphilic CdSe NRs self‐assembled to form elongated wires by end‐to‐end attachment driven by the hydrophobic effect operating between uncapped NR ends. The end‐to‐end assembly technique was further applied to CdS NRs and CdSe tetrapods (TPs) with a wurtzite structure.  相似文献   

15.
Manganese‐corrole complexes in combination with a co‐catalyst [PPN]X ([PPN]+=bis(triphenylphosphoranylidene)iminium) were found to be new versatile catalysts for the polymerization of epoxides, copolymerization of epoxides with CO2, and copolymerization of epoxides with cyclic anhydrides affording a wide range of polymeric materials. This work should allow the synthesis of new types of improved innovative (co)polymers with original properties and would clearly increase the number of applications for polyesters, polycarbonates, and polyethers.  相似文献   

16.
Dispersions of block copolymer fibres in water have many potential applications and can be obtained by polymerization‐induced self‐assembly (PISA), but only under very restricted experimental conditions. In order to enlarge this experimental window, we introduced a supramolecular moiety, a hydrogen‐bonded bis‐urea sticker, in the macromolecular reversible addition fragmentation chain transfer (RAFT) agent to drive the morphology of the nano‐objects produced by RAFT‐mediated PISA towards the fibre morphology. This novel concept is tested in the synthesis of a series of poly(N,N‐dimethylacrylamide)‐b‐poly(2‐methoxyethyl acrylate) (PDMAc‐b‐PMEA) diblock copolymers prepared by dispersion polymerization in water. The results prove that the introduction of the templating bis‐urea stickers into PISA greatly promotes the formation of fibres in a large experimental window.  相似文献   

17.
Soft nanotubes are normally constructed from chiral amphiphiles through helical self‐assembly. Yet, how to self‐assemble achiral molecules into nanotubes is still a challenge. Here, we report the nanotube construction with achiral shape amphiphiles through helical self‐assembly and also unravel the formation mechanisms. The amphiphiles have a dumbbell shape and are composed by covalently linking three achiral moieties together: two unlike clusters and an organic tether. The difference in polarity between the unlike clusters drives the amphiphiles to self‐assemble into single‐ and multi‐walled nanotubes as well as intermediates. Analysis of the key intermediates unravels the self‐assembly mechanism of helicity‐selective nucleation and growth. Meanwhile, direct visualization of the individual clusters in the ribbons displays a two‐dimensional deformed hexagonal lattice. Thus, we speculate that it is the lattice deformation that creates anisotropic tension along different directions of the ribbon which further results in the formation of helical ribbons towards nanotubes by amphiphiles.  相似文献   

18.
N‐Carboxyanhydride ring‐opening polymerization (NCA ROP) is a synthetically straightforward methodology to generate homopolypeptides. Extensive control over the polymerization permits the production of highly monodisperse synthetic polypeptides to a targeted molecular weight in the absence of unfavorable side reactions. Sequential NCA ROP permits the creation of block copolypeptides composed of individual polypeptide blocks boasting different functionalities, secondary structures, and desirable chemical properties. Consequently, a plethora of novel materials have been generated that have found wide‐range applicability. This review offers an insight into contemporary synthetic approaches toward NCA ROP before highlighting a number of block copolypeptide architectures generated.  相似文献   

19.
Despite the central importance of aqueous amphiphile assemblies in science and industry, the size and shape of these nano‐objects is often difficult to control with accuracy owing to the non‐directional nature of the hydrophobic interactions that sustain them. Here, using a bioinspired strategy that consists of programming an amphiphile with shielded directional Watson–Crick hydrogen‐bonding functions, its self‐assembly in water was guided toward a novel family of chiral micelle nanotubes with partially filled lipophilic pores of about 2 nm in diameter. Moreover, these tailored nanotubes are successfully demonstrated to extract and host molecules that are complementary in size and chemical affinity.  相似文献   

20.
The novel hyperbranched poly(methyl acrylate)‐block‐poly(acrylic acid)s (HBPMA‐b‐PAAs) are successfully synthesized via single‐electron transfer‐living radical polymerization (SET‐LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 μm in length, and 0.47 μm in width) are observed by the self‐assembly of unimolecular micelles when pH value is below 2. Such self‐assembly behavior of HBPMA‐b‐PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号