首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The photochemical and electrochemical investigations of commercially available, safe, and cheap fluorescent brighteners, namely, triazinylstilbene (commercial name: fluorescent brightener 28) and 2,5‐bis(5‐tert‐butyl‐benzoxazol‐2‐yl)thiophene, as well as their original use as photoinitiators of polymerization upon light emitting diode (LED) irradiation are reported. Remarkably, their excellent near‐UV–visible absorption properties combined with outstanding fluorescent properties allow them to act as high‐performance photoinitiators when used in combination with diaryliodonium salt. These two‐component photoinitiating systems can be employed for free radical polymerizations of acrylate. In addition, this brightener‐initiated photopolymerization is able to overcome oxygen inhibition even upon irradiation with low LED light intensity. The underlying photochemical mechanisms are investigated by electron‐spin resonance‐spin trapping, fluorescence, cyclic voltammetry, and steady‐state photolysis techniques.

  相似文献   


3.
Efficient cyan‐emitting solid carbon dots (CDs) were synthesized via a one‐pot hydrothermal method. The obtained solid CDs show a broad absorption from 270–460 nm with a maximum around 400 nm, and emit intense cyan light around 500 nm with an internal photoluminescence quantum efficiency of 34.1 % under 400 nm excitation. The emission maximum of the solid CDs remains unchanged under 320–400 nm excitations. Compared with dilute aqueous of CDs (2.5 mg mL?1), the emission of solid CDs shows an obvious red‐shift of 50 nm. The red‐shift is caused by resonant energy transfer due to larger spectral overlap and smaller interparticle distance, together with a new surface state caused by aggregation in solid CDs. A lamp with white LEDs was fabricated by dropping a mixture of solid CDs, CaAlSiN3:Eu2+ and silicon resin on the top of a near‐ultraviolet LED chip. Under an operating current of 20 mA, the as‐fabricated white LED generates a high‐quality, warm white light with a color rendering index of 86.1, a color temperature of 4340 K, and a luminescence efficiency of 31.3 lm W?1.  相似文献   

4.
以2-羟基-4-甲氧基二苯甲酮为碳源,乙二胺为氮源,通过水热法合成一种紫外和短波蓝光双重吸收的油溶性氮掺杂碳点(Carbon Dots,CDs)。将该CDs与聚甲基丙烯酸甲酯复合制得具有紫外光和短波蓝光屏蔽效果的复合镜片材料,当CDs的质量分数为1%时,复合镜片在紫外光区的平均透过率为0%、在短波蓝光区的平均透过率为1.6%,吸收效率为99.6%,是一种强防紫外-短波蓝光材料。  相似文献   

5.
A new phenacyl‐type photoinitiator based on ethyl carbazole as a long wavelength photo­initiator is developed for free radical polymerization. Phenacyl ethyl carbazolium hexafluoroantimonate (PECH) photoinitiator is synthesized in a two‐step, one‐pot manner by quaternizing ethyl carbazole with phenacyl bromide and subsequent ion exchange reaction with potassium hexafluoroantimonate. Under irradiation, PECH tends to undergo homolytic bond cleavage bringing about initiating free radicals. However, as evidenced by cyclic voltammetry and real‐time photobleaching studies, formation of initiating cationic species is highly unlikely as the photochemically formed charged carbazole units tend to couple.

  相似文献   


6.
A key challenge of photoregulated living radical polymerization is developing efficient and robust photocatalysts. Now carbon dots (CDs) have been exploited for the first time as metal‐free photocatalysts for visible‐light‐regulated reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Screening of diverse heteroatom‐doped CDs suggested that the P‐ and S‐doped CDs were effective photocatalysts for RAFT polymerization under mild visible light following a photoinduced electron transfer (PET) involved oxidative quenching mechanism. PET‐RAFT polymerization of various monomers with temporal control, narrow dispersity (?≈1.04), and chain‐end fidelity was achieved. Besides, it was demonstrated that the CD‐catalyzed PET‐RAFT polymerization was effectively performed under natural solar irradiation.  相似文献   

7.
利用亚甲蓝被氧化后褪色的机理,使用Fenton试剂与亚甲蓝作用,验证了体系中起氧化作用的是羟自由基,从而建立了亚甲蓝光度法检验羟自由基的方法。试验结果表明,在过氧化氢与亚甲蓝的摩尔比为1~20范围内,亚甲蓝吸光度的降低值与Fenton试剂的加入量呈直线关系,因而可在660 nm处测定亚甲蓝的褪色程度(ΔA)对羟自由基作间接光度测定。试验同时对超声法产生的羟自由基进行了测定,表明羟自由基的生成量与超声时间成正比。  相似文献   

8.
The study of the composition, morphology, and surface structure of carbon dots (Cdots) is critical to understanding their effect on the photo‐ and electrochemiluminescence (PL and ECL) of Cdots in selected applications. Herein, two kinds of Cdots were prepared with 3‐(3,4‐dihydroxyphenyl)‐L ‐alanine (L ‐DOPA) as precursor. The Cdots prepared by using a carbonization‐extraction strategy have a low oxidation level and are denoted as reduced Cdots (r‐Cdots). The Cdots obtained with a carbonization‐oxidation process are highly oxidized and are denoted as oxidized Cdots (o‐Cdots). The o‐Cdots have a carbon core and oxygen‐containing loose shell, but the r‐Cdots consist mainly of the carbon core. Whereas r‐Cdots have a strong blue PL but no apparent ECL response, o‐Cdots exhibit a relatively weak PL and strong ECL emission. These properties allow for selected applications of the Cdots. The r‐Cdots were used in cell imaging with their high PL emission. The o‐Cdots, with their high ECL efficiencies, were selected to sense Cu2+ with Cu2+‐inducing ECL quenching in the o‐Cdots/K2S2O8 system. This work provides the possibility to control the composition of Cdots for selected applications and shows a good way to characterize surface traps of Cdots because ECL is characterized by the surface‐state and PL is mainly related to the core‐state in Cdots.  相似文献   

9.
A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet‐light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up‐conversion (UC)PL of these CDs is also observed. Moreover, flexible full‐color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light‐emitting diodes, full‐color displays, and multiplexed (UC)PL bioimaging.  相似文献   

10.
Designing efficient room‐temperature phosphorescence (RTP) carbon dots (C‐dots) without the need of an additional matrix is important for various applications. Herein, matrix‐free and highly efficient C‐dots with yellow‐green RTP emission have been successfully synthesized towards information encryption and decryption. Phytic acid (PA) and triethylenetetramine are used as molecular precursors, and a facile microwave‐assisted heating method is selected as synthesis method. The obtained C‐dots exhibit a maximum phosphorescence emission at around 535 nm under an excitation wavelength of 365 nm and a long average lifetime up to 750 ms (more than 9 s to the naked eye). PA containing six phosphate groups and serving as P source plays a significant role in producing the RTP C‐dots. Furthermore, potential applications of the RTP C‐dots in the field of information encryption and decryption are successfully demonstrated.  相似文献   

11.
It is well known that the recently developed photoinduced metal‐free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5‐tetrakis(carbazol‐9‐yl)‐4,6‐dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal‐free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α‐bromophenyl‐acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled “on–off” light switching cycle regulation, and chain extension experiment confirm the “living”/controlled features of this promising photoinduced metal‐free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN.

  相似文献   


12.
以葡萄糖为碳源采用溶剂热法合成了荧光碳点。紫外吸收光谱、荧光光谱以及透射电镜照片表明,所合成的荧光碳点发光性能优异,分散性好,且无团聚现象。荧光碳点原溶液出现浓度淬灭现象,稀释60倍情况下荧光最强。以酿酒酵母为模型生物,考察了不同生长时期(调整期、对数期早期、对数期中期)的酿酒酵母与不同浓度的荧光碳点共培养后的生长曲线。结果表明,即使荧光碳点浓度在27.75 mmol.L-1条件下也没有影响酵母菌的生长曲线,可认为基本没有细胞毒性。比较了相同荧光强度下的荧光碳点与CdTe量子点对酿酒酵母的细胞毒性,结果表明荧光碳点的毒性显著低于量子点的毒性。  相似文献   

13.
《化学:亚洲杂志》2017,12(22):2916-2921
The doping of nitrogen into carbon quantum dots is vitally important for improved fluorescence performance. However, the synthesis of nitrogen‐doped carbon quantum dots (N‐CQDs) is usually conducted under strong acid and high temperature, which results in environmental pollution and energy consumption. Herein, the N‐CQDs were prepared by a mild one‐pot hydrothermal process. The hydrothermal reaction temperature was adjusted to control the particle size, nitrogen/carbon atomic ratio, and quantum yield. The products were water soluble with a narrow particle size distribution and good dispersion stability over a wide pH range. The N‐CQDs could penetrate into the HeLa cell nucleus without any further functionalization. Moreover, the fluorescence of N‐CQDs could be selectively quenched by Cu2+, which suggested applications for the detection of Cu2+ in human plasma.  相似文献   

14.
The cations and radicals produced in aminothiazonaphthalic anhydride derivatives (ATNAs) combined with an iodonium salt, N‐vinylcarbazole, amine, or chloro triazine initiate the ring‐opening cationic polymerization of epoxides and the free radical polymerization of acrylates under LEDs at 405 or 455 nm. The photoinitiating ability of these novel photoinitiating systems is higher than that of the well‐known camphorquinone‐based systems. An example of the high reactivity of the new proposed photoinitiator is also provided in resins for 3D‐printing using a LED projector@405 nm. The chemical mechanisms are investigated by steady‐state photolysis, cyclic voltammetry, fluorescence, laser flash photolysis, and electron spin resonance spin‐trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1189–1196  相似文献   

15.
Isoquinolinone derivatives (IQ) have been synthesized and combined with different additives (an amine, 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine, an iodonium salt, or N‐vinylcarbazole) to produce reactive species (i.e. radicals and cations) being able to initiate the radical polymerization of acrylates, the cationic polymerization of epoxides, the thiol‐ene polymerization of trifunctional thiol/divinylether, and the synthesis of epoxide/acrylate interpenetrated polymer network IPN upon exposure to very soft polychromatic visible lights, blue laser diode or blue LED lights. Compared with the use of camphorquinone based systems, the novel combinations employed here ensures higher monomer conversions (~50–60% vs. ~15–35%) and better polymerization rates in radical polymerization. The chemical mechanisms are studied by steady‐state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin trapping techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 567–575  相似文献   

16.
The intrinsic low yield of carbon dots (CDs) is a barrier that limits practical application. Now, a magnetic hyperthermia (MHT) method is used to synthesize fluorescent CDs on a large scale (up to 85 g) in one hour (yield ca. 60 %). The reaction process is intensified by MHT since the efficient heating system enhances the energy transfer. CDs with blue, green, and yellow luminescence are synthesized by using carbamide and citrate with three different cations (Zn2+, Na+, K+), respectively. The CDs exhibit bright fluorescence under UV light and show excellent monodispersity and solubility in water. The alternation of photoluminescence (PL) emissions of these CDs is probably due to the difference in particle sizes and surface state. A bar coating technique is used to construct large‐area emissive polymer/CDs films. CDs can insert themselves into the polymer chains by hydrogen bonding and electrostatic interactions. Wound healing efficiency can be enhanced by the Zn‐CDs/PCL nanofibrous scaffold.  相似文献   

17.
Carbon dots (CDs) with dual‐emissive, robust, and aggregation‐induced RTP characteristics are reported for the first time. The TA‐CDs are prepared via hydrothermal treatment of trimellitic acid and exhibit unique white prompt and yellow RTP emissions in solid state under UV excitation (365 nm) on and off, respectively. The yellow RTP emission of TA‐CDs powder should be resulted from the formation of a new excited triplet state due to their aggregation, and the white prompt emission is due to their blue fluorescence and yellow RTP dual‐emissive nature. The RTP emission of TA‐CDs powder was highly stable under grinding, which is very rare amongst traditional pure organic RTP materials. To employ the unique characteristics of TA‐CDs, advanced anti‐counterfeiting and information encryption methodologies (water‐stimuli‐response producing RTP) were preliminarily investigated.  相似文献   

18.
The utilization of visible lights for the fabrication of polymeric materials is recognized as a promising and environmentally friendly approach. This process relies on the photochemical generation of reactive species (e.g., radicals, radical cations, or cations) from well‐designed photoinitiators (PIs) or photoinitiating systems (PISs) to initiate the polymerization reactions of different monomers (acrylates, methacrylates, epoxides, and vinyl ethers). In spite of the fact that metal complexes such as ruthenium‐ or iridium‐based complexes have found applications in organic and polymer synthesis, the search of other low‐cost metal‐based complexes as PISs is emerging and attracting increasing attentions. Particularly, the concept of the photoredox catalysis has appeared recently as a unique tool for polymer synthesis upon soft conditions (use of light emitting diodes and household lamp). This highlight focuses on recently designed copper and iron complexes as PI catalysts in the application of photoinduced polymerizations (radical, cationic, interpenetrated polymer networks, and thiol‐ene) or controlled radical polymerization under visible light irradiation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2673–2684  相似文献   

19.
Photoluminescence (PL), up‐conversion PL (UCPL), and phosphorescence are three kinds of phenomena common to light‐emitting materials, but it is very difficult to observe all of them simultaneously when they are derived from a single material at room temperature. For the first time, triple‐mode emission (that is, PL, UCPL, and room temperature phosphorescence (RTP)) is reported, which relies on a composite of the luminescent carbon dots (CDs) prepared from m‐phenylenediamine and poly(vinyl alcohol) (PVA). Moreover, the CDs‐PVA aqueous dispersion is nearly colorless and demonstrates promise as a triple‐mode emission ink in the field of advanced anti‐counterfeiting.  相似文献   

20.
The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one‐pot solvothermal synthesis of N‐doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as‐prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, AgI, and FeIII in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of AgI and FeIII was achieved based on their distinctive fluorescence influence because AgI can significantly enhance the fluorescence whereas FeIII can greatly quench the fluorescence. The quantitative determination of AgI can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of AgI. The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of FeIII and FeII toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号