首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A neutral hybrid macrocycle with two trans-positioned N-heterocyclic carbenes (NHCs) and two pyridine donors hosts copper in three oxidation states (+I–+III) in a series of structurally characterized complexes ( 1 – 3 ). Redox interconversion of [LCu]+/2+/3+ is electrochemically (quasi)reversible and occurs at moderate potentials (E1/2=−0.45 V and +0.82 V (vs. Fc/Fc+)). A linear CNHC-Cu-CNHC arrangement and hemilability of the two pyridine donors allows the ligand to adapt to the different stereoelectronic and coordination requirements of CuI versus CuII/CuIII. Analytical methods such as NMR, UV/Vis, IR, electron paramagnetic resonance, and Cu Kβ high-energy-resolution fluorescence detection X-ray absorption spectroscopies, as well as DFT calculations, give insight into the geometric and electronic structures of the complexes. The XAS signatures of 1 – 3 are textbook examples for CuI, CuII, and CuIII species. Facile 2-electron interconversion combined with the exposure of two basic pyridine N sites in the reduced CuI form suggest that [LCu]+/2+/3+ may operate in catalysis via coupled 2 e/2 H+ transfer.  相似文献   

2.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

3.
In this paper, we report the results of a study involving the coordination geometries of CuI, CuII, and CuIII crystal structures in the Cambridge Structural Database, and on Cu binding sites in proteins taken from the Protein Data Bank. The motifs used to bind two bridged Cu ions are also described. In addition, we report the results of ab initio molecular‐orbital calculations performed on a variety of model CuI/CuII complexes (CuI/CuII?XnYm (X, Y=NH3, SH2); n+m=4; n=0–4) to provide data on the structural and energetic changes that occur in isolated complexes when the oxidation state of the Cu ion is changed from II to I while the coordination number is conserved. The use of such simple ligands in these calculations eliminates constraints on the geometric changes that may be imposed by more‐complicated ligands.  相似文献   

4.
The intrinsic binding ability of 7 natural peptides (oxytocin, arg8‐vasopressin, bradykinin, angiotensin‐I, substance‐P, somatostatin, and neurotensin) with copper in 2 different oxidation states (CuI/II) derived from different Cu+/2+ precursor sources have been investigated for their charge‐dependent binding characteristics. The peptide‐CuI/II complexes, [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII], are prepared/generated by the reaction of peptides with CuI solution/Cu‐target and CuSO4 solution and are analyzed by using matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry. The MALDI mass spectra of both [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII] complexes show no mass shift due to the loss of ─H atoms in the main chain ─NH of these peptides by Cu+ and Cu2+ deprotonation. The measured m/z value indicates the reduction of CuI/II oxidation state into Cu0 during MALDI processes. The number and relative abundance of Cu+ bound to the peptides are greater compared with the Cu2+ bound peptides. Oxytocin, arg8‐vasopressin, bradykinin, substance‐P, and somatostatin show the binding of 5Cu+, and angiotensin‐I and neurotensin show the binding of 7Cu+ from both CuI and Cu targets, while bradykinin shows the binding of 2Cu2+, oxytocin, arg8‐vasopressin, angiotensin‐I, and substance‐P; somatostatin shows the binding of 3Cu2+; and neurotensin shows 4Cu2+ binding. The binding of more Cu+ with these small peptides signifies that the bonding characteristics of both Cu+ and Cu2+ are different. The amino acid residues responsible for the binding of both Cu+ and Cu2+ in these peptides have been identified based on the density functional theory computed binding energy values of Cu+ and the fragment transformation method predicted binding preference of Cu2+ for individual amino acids.  相似文献   

5.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

6.
Complexation studies of the dinucleating ligand H3L (H3L=2‐{[bis(pyridin‐2‐ylmethyl)amino]methyl}‐6‐{[bis(6‐pivaloylamidopyridin‐2‐ylmethyl)amino]methyl}‐4‐methylphenol), with metal‐binding sites A and B, which both provide four donors to a metal ion; a tertiary amine; two pyridines (substituted with amide hydrogen‐bond donors in site B), and a bridging phenolate, with ZnII, CuII, and GaIII are reported. The titration of H3L with the three metal ions in solution was monitored by NMR spectroscopy or EPR and UV/Vis/near‐IR spectroscopy, as well as by ESI‐MS to analyze the selectivity of the two metal‐ion sites A and B of this model ligand for metallophosphatases; the spectroscopic assignments are supported by X‐ray crystallography results. The first ZnII ion coordinates to site A with unsubstituted pyridine donors and, upon addition of a second equivalent of ZnII, this coordinates to the sterically less accessible site B. From a similar titration with GaIII, it emerges that only a mononuclear complex is obtained, with the GaIII center coordinated to site A. When one equivalent of GaIII is reacted with the mononuclear ZnII complex, ZnII is forced by GaIII to exchange the site; this results in a dinuclear complex with GaIII in site A and ZnII in site B. With CuII, two isomers are observed: one with and the other without a bridging phenolate; these differ significantly in their spectroscopic and magnetic properties.  相似文献   

7.
The simultaneous measurement of the decrease of available FeII ions and the increase of available FeIII ions allowed the analysis of the ferroxidase activity of two distinct apoferritins. Although recombinant human apoferritin (HuFtH) rapidly oxidizes FeII to FeIII, this iron is not properly stored in the ferritin cavity, as otherwise occurs in horse‐spleen H/L‐apoferritin (HsFt; H=heavy subunit, L=light subunit). Iron storage in these apoferritins was also studied in the presence of two copper‐loaded mammalian metallothioneins (MT2 and MT3), a scenario that occurs in different brain‐cell types. For HuFtH, unstored FeIII ions trigger the oxidation of Cu–MT2 with concomitant CuI release. In contrast, there is no reaction with Cu–MT2 in the case of HsFt. Similarly, Cu–MT3 does not react during either HuFtH or HsFt iron reconstitution. Significantly, the combination of ferritin and metallothionein isoforms reported in glia and neuronal cells are precisely those combinations that avoid a harmful release of FeII and CuI ions.  相似文献   

8.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

9.
The two‐dimensional (2D) layer CuII compound [Cu3(L)2(N3)4] ( 1 ) [L = 2‐amino‐3‐(5‐tetrazole)‐methyate‐N‐pyridine] was synthesized by in‐situ hydrothermal reaction of CuCl2 · 2H2O, NaN3, and 3‐(5‐tetrazole)‐methyate‐N‐pyridine. The central Cu1 and Cu2 atoms are located in five‐coordinate and six‐coordinate arrangements, respectively. Three CuII ions are linked by mixed double EO (end‐on)‐azido‐tetrazole bridges to give trinuclear CuII clusters, which are further extended by EE (end‐to‐end) azido bridges to form 2D metal‐organic layers. The magnetic exchange interactions in complex 1 were investigated by DFT calculations, and the calculated exchange interaction (J = –849 cm–1) revealed that the double EO‐azido‐tetrazole bridges transmit antiferromagnetic coupling between CuII ions.  相似文献   

10.
The dioxygen activation of a series of CuICuICuI complexes based on the ligands ( L ) 3,3′‐(1,4‐diazepane‐ 1,4‐diyl)bis(1‐{[2‐(dimethylamino)ethyl](methyl)amino}propan‐2‐ol) ( 7‐Me ) or 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis(1‐{[2‐(diethylamino)ethyl](ethyl)amino}propan‐2‐ol) ( 7‐Et ) forms an intermediate capable of mediating facile O‐atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7‐Me , 7‐Et , and 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis[1‐(4‐methylpiperazin‐1‐yl)propan‐2‐ol] ( 7‐N‐Meppz ) with dioxygen at ?80, ?55, and ?35 °C in propionitrile (EtCN) by UV‐visible, 77 K EPR, and X‐ray absorption spectroscopy, and 7‐N‐Meppz and 7‐Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both ?80 and ?55 °C, the mixing of the starting [CuICuICuI( L )]1+ complex ( 1 ) with O2‐saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ ( 2 ) and the blue [CuIICuII(μ‐O)CuII( L )]2+ species ( 3 ). These observations are consistent with the initial formation of [CuIICuII(μ‐O)2CuIII( L )]1+ ( 4 ), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [CuIICuICuI( L )]2+ ( 5 ) to form the green dioxygen adduct 2 . Assignment of 2 to [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ is consistent with its reactivity with water to give H2O2 and the blue species 3 , as well as its propensity to be photoreduced in the X‐ray beam during X‐ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2) facile O‐atom transfer from the activated cluster to substrate; and 3) a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.  相似文献   

11.
Synthesis of small‐molecule Cu2O2 adducts has provided insight into the related biological systems and their reactivity patterns including the interconversion of the CuII2(μ‐η22‐peroxo) and CuIII2(μ‐oxo)2 isomers. In this study, absorption spectroscopy, kinetics, and resonance Raman data show that the oxygenated product of [(BQPA)CuI]+ initially yields an “end‐on peroxo” species, that subsequently converts to the thermodynamically more stable “bis‐μ‐oxo” isomer (Keq=3.2 at ?90 °C). Calibration of density functional theory calculations to these experimental data suggest that the electrophilic reactivity previously ascribed to end‐on peroxo species is in fact a result of an accessible bis‐μ‐oxo isomer, an electrophilic Cu2O2 isomer in contrast to the nucleophilic reactivity of binuclear CuII end‐on peroxo species. This study is the first report of the interconversion of an end‐on peroxo to bis‐μ‐oxo species in transition metal‐dioxygen chemistry.  相似文献   

12.
Starting from the pentafluorophenyl ester of 4‐(dimethylamino)benzoic acid, two dual fluorescent amide ligands with aza‐15‐crown‐5 and 2‐(aminomethyl)pyridine were obtained for sensing, respectively, alkali (alkaline‐earth) and transition (heavy) metal cations. The crystal structure of the copper(II) complex is reported. The Cu2+ is coordinated through the pyridine N‐ and amide O‐atoms of two symmetry‐related ligands. The azacrown‐directed Ca‐chelation to the N‐atom of the amide leads to a slight quenching of the two fluorescence bands. In contrast, the pyridine directed CuII‐chelation to the O‐atom of the amide enhances the short‐wavelength emission 17‐fold over the locally excited state (LE), quenching the twisted intramolecular charge‐transfer (TICT) emission, and, as a result, the intensity ratio I(LE)/I(TICT) provides an accurate and sensitive measurement of the CuII concentration. These different cation effects are dependent on which atom (N vs. O) of the amide function participates in cation coordination: while the Ca2+ interaction with the N‐atom electron pair leads to the deconjugation of the amide N‐atom from the fluorophore, Cu2+ interaction with the lone pair of the O‐atom of the carbonyl group increases the energy of the n‐π* but also of the 1La transition and therefore close the channel to the TICT state.  相似文献   

13.

Abstract  

A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates.  相似文献   

14.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

15.
A bimetallic system of Pd/CuF2, catalytic in Pd and stoichiometric in Cu, is very efficient and selective for the coupling of fairly hindered aryl silanes with aryl, anisyl, phenylaldehyde, p‐cyanophenyl, p‐nitrophenyl, or pyridyl iodides of conventional size. The reaction involves the activation of the silane by CuII, followed by disproportionation and transmetalation from the CuI(aryl) to PdII, upon which coupling takes place. CuIII formed during disproportionation is reduced to CuI(aryl) by excess aryl silane, so that the CuF2 system is fully converted into CuI(aryl) and used in the coupling. Moreover, no extra source of fluoride is needed. Interesting size selectivity towards coupling is found in competitive reactions of hindered aryl silanes. Easily accessible [PdCl2(IDM)(AsPh3)] (IDM = 1,3‐dimethylimidazol‐2‐ylidene) is by far the best catalyst, and the isolated products are essentially free from As or Pd (<1 ppm). The mechanistic aspects of the process have been experimentally examined and discussed.  相似文献   

16.
Introducing heterovalent cations at the octahedral sites of halide perovskites can substantially change their optoelectronic properties. Yet, in most cases, only small amounts of such metals can be incorporated as impurities into the three-dimensional lattice. Here, we exploit the greater structural flexibility of the two-dimensional (2D) perovskite framework to place three distinct stoichiometric cations in the octahedral sites. The new layered perovskites AI4[CuII(CuIInIII)0.5Cl8] (1, A = organic cation) may be derived from a CuI–InIII double perovskite by replacing half of the octahedral metal sites with Cu2+. Electron paramagnetic resonance and X-ray absorption spectroscopy confirm the presence of Cu2+ in 1. Crystallographic studies demonstrate that 1 represents an averaging of the CuI–InIII double perovskite and CuII single perovskite structures. However, whereas the highly insulating CuI–InIII and CuII perovskites are colorless and yellow, respectively, 1 is black, with substantially higher electronic conductivity than that of either endmember. We trace these emergent properties in 1 to intervalence charge transfer between the mixed-valence Cu centers. We further propose a tiling model to describe how the Cu+, Cu2+, and In3+ coordination spheres can pack most favorably into a 2D perovskite lattice, which explains the unusual 1 : 2 : 1 ratio of these cations found in 1. Magnetic susceptibility data of 1 further corroborate this packing model. The emergence of enhanced visible light absorption and electronic conductivity in 1 demonstrates the importance of devising strategies for increasing the compositional complexity of halide perovskites.

A novel 2D halide perovskite with stoichiometric quantities of Cu+, Cu2+, and In3+ in the inorganic slabs shows emergent properties not seen in CuII or CuI–InIII perovskites, including enhanced visible-light absorption and electronic conductivity.  相似文献   

17.
Double‐stranded copper(II) string complexes of varying nuclearity, from di‐ to tetranuclear species, have been prepared by the CuII‐mediated self‐assembly of a novel family of linear homo‐ and heteropolytopic ligands that contain two outer oxamato and either zero ( 1 b ), one ( 2 b ), or two ( 3 b ) inner oxamidato donor groups separated by rigid 2‐methyl‐1,3‐phenylene spacers. The X‐ray crystal structures of these CuIIn complexes (n=2 ( 1 d ), 3 ( 2 d ), and 4 ( 3 d )) show a linear array of metal atoms with an overall twisted coordination geometry for both the outer CuN2O2 and inner CuN4 chromophores. Two such nonplanar allsyn bridging ligands 1 b – 3 b in an anti arrangement clamp around the metal centers with alternating M and P helical chiralities to afford an overall double meso‐helicate‐type architecture for 1 d – 3 d . Variable‐temperature (2.0–300 K) magnetic susceptibility and variable‐field (0–5.0 T) magnetization measurements for 1 d – 3 d show the occurrence of S=nSCu (n=2–4) high‐spin ground states that arise from the moderate ferromagnetic coupling between the unpaired electrons of the linearly disposed CuII ions (SCu=1/2) through the two anti m‐phenylenediamidate‐type bridges (J values in the range of +15.0 to 16.8 cm?1). Density functional theory (DFT) calculations for 1 d – 3 d evidence a sign alternation of the spin density in the meta‐substituted phenylene spacers in agreement with a spin polarization exchange mechanism along the linear metal array with overall intermetallic distances between terminal metal centers in the range of 0.7–2.2 nm. Cyclic voltammetry (CV) and rotating‐disk electrode (RDE) electrochemical measurements for 1 d – 3 d show several reversible or quasireversible one‐ or two‐electron steps that involve the consecutive metal‐centered oxidation of the inner and outer CuII ions (SCu=1/2) to diamagnetic CuIII ones (SCu=0) at relatively low formal potentials (E values in the range of +0.14 to 0.25 V and of +0.43 to 0.67 V vs. SCE, respectively). Further developments may be envisaged for this family of oligo‐m‐phenyleneoxalamide copper(II) double mesocates as electroswitchable ferromagnetic ‘metal–organic wires’ (MOWs) on the basis of their unique ferromagnetic and multicenter redox behaviors.  相似文献   

18.
Coordination polymers are a thriving class of functional solid‐state materials and there have been noticeable efforts and progress toward designing periodic functional structures with desired geometrical attributes and chemical properties for targeted applications. Self‐assembly of metal ions and organic ligands is one of the most efficient and widely utilized methods for the construction of CPs under hydro(solvo)thermal conditions. 2‐(Pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylate (HPIDC2−) has been proven to be an excellent multidentate ligand due to its multiple deprotonation and coordination modes. Crystals of poly[aquabis[μ3‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)], [CuIICuI2(C10H5N3O4)2(H2O)]n, (I), were obtained from 2‐(pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PIDC) and copper(II) chloride under hydrothermal conditions. The asymmetric unit consists of one independent CuII ion, two CuI ions, two HPIDC2− ligands and one coordinated water molecule. The CuII centre displays a square‐pyramidal geometry (CuN2O3), with two N,O‐chelating HPIDC2− ligands occupying the basal plane in a trans geometry and one O atom from a coordinated water molecule in the axial position. The CuI atoms adopt three‐coordinated Y‐shaped coordinations. In each [CuN2O] unit, deprotonated HPIDC2− acts as an N,O‐chelating ligand, and a symmetry‐equivalent HPIDC2− ligand acts as an N‐atom donor via the pyridine group. The HPIDC2− ligands in the polymer serve as T‐shaped 3‐connectors and adopt a μ3‐κ2N,O2N′,O′:κN′′‐coordination mode, linking one CuII and two CuI cations. The Cu cations are arranged in one‐dimensional –Cu1–Cu2–Cu3– chains along the [001] direction. Further crosslinking of these chains by HPIDC2− ligands along the b axis in a –Cu2–HPIDC2−–Cu3–HPIDC2−–Cu1– sequence results in a two‐dimensional polymer in the (100) plane. The resulting (2,3)‐connected net has a (123)2(12)3 topology. Powder X‐ray diffraction confirmed the phase purity for (I), and susceptibilty measurements indicated a very weak ferromagnetic behaviour. A thermogravimetric analysis shows the loss of the apical aqua ligand before decomposition of the title compound.  相似文献   

19.
The synthesis and complexation properties of 1,4-dimethyl-8-[2-(2-pyridyl)ethyl]-1,4,8,11-tetraazacyclotetra-decane ( 2 ) are described. This ligand forms with Cu2+ two complexes, one of which has been characterized by X-ray structure analysis. The structural, spectral, and kinetic studies indicate that the two Cu2+ complexes are isomers with the macrocycle in the trans-III and trans-I configuration. The rate of the interconversion of the trans-I isomer to the thermodynamically more stable trans-III species is proportional to [OH?]. A mechanism for this reaction is proposed.  相似文献   

20.
In contrast to the UV‐photoinduced ligand photoionization of the flavonoid complexes of FeIII, redox reactions initiated in ligand‐to‐metal charge‐transfer excited states were observed on irradiation of the quercetin ( 1 ) and rutin ( 2 ) complexes of CuII. Solutions of complexes with stoichiometries [CuIIL2] (L=quercetin, rutin) and [CuII2Ln] (n=1, L=quercetin; n=3, L=rutin) were flash‐irradiated at 351 nm. Transient spectra observed in these experiments showed the formation of radical ligands corresponding to the one‐electron oxidation of L and the reduction of CuII to CuI. The radical ligands remained coordinated to the CuI centers, and the substitution reactions replacing them by solvent occurred with lifetimes τ<350 ns. These are lifetimes shorter than the known lifetimes (τ>1 ms) of the quercetin and rutin radical's decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号