首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A supramolecular antibiotic switch is described that can reversibly “turn‐on” and “turn‐off” its antibacterial activity on demand, providing a proof‐of‐concept for a way to regulate antibacterial activity of biotics. The switch relies on supramolecular assembly and disassembly of cationic poly(phenylene vinylene) derivative (PPV) with cucurbit[7]uril (CB[7]) to regulate their different interactions with bacteria. This simple but efficient strategy does not require any chemical modification on the active sites of the antibacterial agent, and could also regulate the antibacterial activity of classical antibiotics or photosensitizers in photodynamic therapy. This supramolecular antibiotic switch may be a successful strategy to fight bacterial infections and decrease the emergence of bacterial resistance to antibiotics from a long‐term point of view.  相似文献   

2.
Carbapenem‐resistant Gram‐negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer‐membrane or are excluded by efflux mechanisms. Here, we report a cationic block β‐peptide (PAS8‐b‐PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8‐b‐PDM12 does not only compromise the integrity of the bacterial outer‐membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8‐b‐PDM12 sensitizes carbapenem‐ and colistin‐resistant GNB to multiple antibiotics in vitro and in vivo. The β‐peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α‐peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.  相似文献   

3.
Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.  相似文献   

4.
There is an urgent unmet medical need for new treatments for wound and burn infections caused by multidrug‐resistant Gram‐negative “superbugs,” especially the problematic Pseudomonas aeruginosa . In this work, the incorporation of colistin, a potent lipopeptide into a self‐healable hydrogel (via dynamic imine bond formation) following the chemical reaction between the amine groups present in glycol chitosan and an aldehyde‐modified poly(ethylene glycol), is reported. The storage module (G ′) of the colistin‐loaded hydrogel ranges from 1.3 to 5.3 kPa by varying the amount of the cross‐linker and colistin loading providing different options for topical wound healing. The majority of the colistin is released from the hydrogel within 24 h and remains active as demonstrated by both antibacterial in vitro disk diffusion and time‐kill assays. Moreover and pleasingly, the colistin‐loaded hydrogel performs almost equally well as native colistin against both the colistin‐sensitive and also colistin‐resistant P. aeruginosa strain in the in vivo animal “burn” infection model despite exhibiting a slower killing profile in vitro. Based on this antibiotic performance along with the biodegradability of the product, it is believed the colistin‐loaded hydrogel to be a potential localized wound‐healing formulation to treat burn wounds against microbial infection.

  相似文献   


5.
The synthesis of norvancomycin (NVan)-capped silver nanoparticles (Ag@NVan) and their notable in vitro antibacterial activities against E. coli, a Gram-negative bacterial strain (GNB), are reported here. Mercaptoacetic acid-stabilized spherical silver nanoparticles with a diameter of 16±4 nm are prepared by a simple chemical reaction. The formation process of the silver nanoparticles is investigated by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). NVan is then grafted to the terminal carboxyl of the mercaptoacetic acid in the presence of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC). The TEM images of single bacteria treated with Ag@NVan show that plenty of Ag@NVan aggregate in the cell wall of E. coli. A possible antibacterial mechanism is proposed that silver nanoparticles may help destroy the stability of the outer membrane of E. coli, which makes NVan easier to bind to the nether part of the peptidoglycan structure. The antibacterial activities of silver nanoparticles on their own, together with the rigid polyvalent interaction between Ag@NVan and cell wall, enables Ag@NVan to be an effective inhibitor of GNB. This kind of bionanocomposites might be used as novel bactericidal materials and we also provide an effective synthesis method for preparing functional bioconjugated nanoparticles here.  相似文献   

6.

Background  

The first target of antimicrobial peptides (AMPs) is the bacterial membrane. In the case of Gram-negative bacteria this is the outer membrane (OM), the lipid composition of which is extremely asymmetric: Whereas the inner leaflet is composed of a phospholipid mixture, the outer leaflet is made up solely from lipopolysaccharides (LPSs). LPS, therefore, represents the first target of AMPs. The binding and intercalation of polycationic AMPs is driven by the number and position of negatively charged groups of the LPS. Also, proteins other than cationic AMPs can interact with LPS, e.g. leading eventually to a neutralization of the endotoxic effects of LPS. We compared different biophysical techniques to gain insight into the properties of the electrical surface potentials of lipid monolayers and aggregates composed of LPSs and various phospholipids and their interaction with peptides and proteins.  相似文献   

7.
Yi EC  Hackett M 《The Analyst》2000,125(4):651-656
A fast, convenient extraction method for lipopolysaccharide (LPS), using a commercial RNA isolating reagent, allows the isolation of LPS or lipid A from low milligram (dry weight) quantities of bacterial cells. The method avoids the use of specialized equipment and has been used for processing relatively large numbers of samples. The major components of the commercial RNA isolating reagent, Tri-Reagent, are phenol and guanidinium thiocyanate in aqueous solution. The bacterial cell membranes are disrupted with guanidinium thiocyanate, which eliminates the need for mechanical cell disruption (e.g. French press) or heating. LPS and its degradation products, with particular attention paid to its bioactive lipid A portion, were measured and compared with those from the most common conventional extraction method, hot phenol-water. Negative ion quadrupole ion trap and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, fatty acid composition analysis by capillary gas chromatography, total and free phosphate by UV spectrophotometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that LPS and lipid A isolated using the Tri-Reagent approach were cleaner and suffered less degradation through loss of phosphate and (or) fatty acyl side chains from lipid A. The Tri-Reagent extraction method generated low free phosphate contamination, 11% of the total phosphate concentration, whereas the hot phenol-water extraction method gave approximately 58% as free, inorganic phosphate. Similar results were observed for the degradation of fatty acyl side chains. The time required by the new method is considerably shorter (two or three days) than that required by conventional hot phenol-water extraction (about two weeks).  相似文献   

8.
Helicobacter pylori is a common cause of gastroduodenal inflammatory diseases such as chronic gastritis and peptic ulcers and also an important factor in gastric carcinogenesis. Recent reports have demonstrated that bacterial inflammatory processes, such as stimulation with H. pylori lipopolysaccharide (LPS), initiate atherosclerosis. To establish the structures responsible for the inflammatory response of H. pylori LPS, we synthesized various kinds of lipid A structures (i.e., triacylated lipid A and Kdo‐lipid A compounds), with or without the ethanolamine group at the 1‐phosphate moiety, by a new divergent synthetic route. Stereoselective α‐glycosylation of Kdo N‐phenyltrifluoroacetimidate was achieved by use of microfluidic methods. None of the lipid A and Kdo‐lipid A compounds were a strong inducer of IL‐1β, IL‐6, or IL‐8, suggesting that H. pylori LPS is unable to induce acute inflammation. In fact, the lipid A and Kdo‐lipid A compounds showed antagonistic activity against cytokine induction by E. coli LPS, except for the lipid A compound with the ethanolamine group, which showed very weak agonistic activity. On the other hand, these H. pylori LPS partial structures showed potent IL‐18‐ and IL‐12‐inducing activities. IL‐18 has been shown to correlate with chronic inflammation, so H. pylori LPS might be implicated in the chronic inflammatory responses induced by H. pylori. These results also indicated that H. pylori LPS can modulate the immune response: NF‐κB activation through hTLR4/MD‐2 was suppressed, whereas production of IL‐18 and IL‐12 was promoted.  相似文献   

9.
New supramolecular assemblies based on cyclodextrin and adamantane were prepared. Two methacrylate monomers bearing cyclodextrin and adamantane were synthesized, and copolymerized with poly(ethylene glycol) methyl ether methacrylate, (PEGMA, 300 g/mol), by free radical polymerization. Copolymers bearing pendent cyclodextrin and adamantane were characterized by NMR, FTIR, TGA, SEC, Differential scanning calorimetry (DSC), and UV‐visible spectrophotometer. All copolymers showed two distinct glass transitions. The specific interaction between pendent adamantyl and cyclodextrin was examined by 1H‐NMR. The viscoelastic properties of supramolecular assemblies were investigated with frequency and temperature sweep experiments. The specific host‐guest interaction between pendent adamantyl and cyclodextrin lead to large increases of the viscosity; and depending on the concentration of these groups, also to gel formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 581–592, 2010  相似文献   

10.
Lipopolysaccharide (LPS) is an essential component of the outer membrane of Gram‐negative bacteria and consists of three elements: lipid A, the core oligosaccharide, and the O‐antigen. The inner‐core region is highly conserved and contains at least one residue of 3‐deoxy‐D ‐manno‐octulosonate (Kdo). Arabinose‐5‐phosphate isomerase (API) is an aldo–keto isomerase catalyzing the reversible isomerization of D ‐ribulose‐5‐phosphate (Ru5P) to D ‐arabinose‐5‐phosphate (A5P), the first step of Kdo biosynthesis. By exploiting saturation transfer difference (STD) NMR spectroscopy, the structural requirements necessary for API substrate recognition and binding were identified, with the aim of designing new API inhibitors. In addition, simple experimental conditions for the STD experiments to perform a fast, robust, and efficient screening of small libraries of potential API inhibitors, allowing the identification of new potential leads, were set up. Due to the essential role of API enzymes in LPS biosynthesis and Gram‐negative bacteria survival, by exploiting these data, a new generation of potent antibacterial drugs could be developed.  相似文献   

11.
Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and obviates the use of harsh ligation conditions that could denature fragile proteins. In the work presented here, reversible supramolecular immobilization of proteins on lipid bilayer surfaces was achieved by using the host–guest interaction of the macrocyclic molecule cucurbit[8]uril. A fluorescent protein was successfully immobilized on the lipid bilayer by making use of the property of cucurbit[8]uril to host together a methylviologen and the indole of a tryptophan positioned on the N‐terminal of the protein. The supramolecular complex was anchored to the bilayer through a cholesterol moiety that was attached to the methylviologen tethered with a small polyethylene glycol spacer. Protein immobilization studies using a quartz crystal microbalance (QCM) showed the assembly of the supramolecular complexes on the bilayer. Specific immobilization through the protein N‐terminus is more efficient than through protein side‐chain events. Reversible surface release of the proteins could be achieved by washing with cucurbit[8]uril or buffer alone. The described system shows the potential of supramolecular assembly of proteins and provides a method for site‐specific protein immobilization under mild conditions in a reversible manner.  相似文献   

12.
The synthesis of norvancomycin (NVan)-capped silver nanoparticles (Ag@NVan) and their notable in vitro antibacterial activities against E. coli, a Gram-negative bacterial strain (GNB), are reported here. Mercaptoacetic acid-stabilized spherical silver nanoparticles with a diameter of 16±4 nm are prepared by a simple chemical reaction. The formation process of the silver nanoparticles is investigated by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). NVan is then grafted to the terminal carboxyl of the mercaptoacetic acid in the presence of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC). The TEM images of single bacteria treated with Ag@NVan show that plenty of Ag@NVan aggregate in the cell wall of E. coli. A possible antibacterial mechanism is proposed that silver nanoparticles may help destroy the stability of the outer membrane of E. coli, which makes NVan easier to bind to the nether part of the peptidoglycan structure. The antibacterial activities of silver nanoparticles on their own, together with the rigid polyvalent interaction between Ag@NVan and cell wall, enables Ag@NVan to be an effective inhibitor of GNB. This kind of bionanocomposites might be used as novel bactericidal materials and we also provide an effective synthesis method for preparing functional bioconjugated nanoparticles here. Supported by the National Natural Science Foundation of China (Grant No. 50373036) and Fok Ying Tung Education Foundation (Grant No. J20040212)  相似文献   

13.
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial N? Cl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.  相似文献   

14.
Structural elucidation of six regioisomers of mono‐N‐octyl derivatized neomycin is achieved using MSn (up to n = 4) on an ion trap time‐of‐flight (IT‐TOF) instrument equipped with electrospray ionization. The mixture of six derivatized neomycin analogues was generated by reductive amination in a shotgun synthetic approach. In parallel to the liquid chromatography/mass spectrometry (LC/MS) detection, the antibacterial activity of the neomycin regioisomers was tested by post‐column addition of buffer and bacterial inocula, subsequent microfractionation of the resulting mixture, incubation, and finally a chemiluminescence‐based bioactivity measurement based on the production of bacterial ATP. The MS‐based high‐resolution screening approach described can be applied in medicinal chemistry to help in designing and producing new antibiotic substances, which is particularly challenging due to the high functionality of most antibiotic substances, therefore requiring advanced (hyphenated) separation and detection techniques for compound mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Herein, we report a reversible modular chloride transport process based on host–guest competitive interactions between an imidazolium‐based chloride carrier and beta‐cyclodextrin. We report evidence for the formation of the supramolecular complex between 1,3‐bis(2‐(adamantan‐1‐yl)ethyl)imidazolium bis(trifluorometyl‐sulfonyl)imide with two β‐cyclodextrins. Through fluorescence assays in liposomes and black lipid membrane experiments, we demonstrate that the formation of the supramolecular complex results in the inhibition of the chloride transport. We show that the chloride transport process can be entirely restored in the presence of competitive adamantyl‐functionalized guests. This is the first example of an entirely reversible modular chloride transport process in phospholipid bilayers involving a mobile carrier transporter and cyclodextrin supramolecular complex.  相似文献   

16.
A supramolecular complex that can be selectively reduced to radical anions in situ by facultative anaerobic bacteria is reported. To this end, a water‐soluble bifunctional monomer bearing perylene diimide was synthesized, and its supramolecular complex with cucurbit[7]uril was fabricated on the basis of host–guest complexation, which could be reduced to forming radical anions in the presence of E. coli . It was found that this supramolecular complex could display different ability of generating radical anions by facultative anaerobic and aerobic bacteria in terms of their various reductive abilities. The selective antibacterial activity of the supramolecular complex could be realized by the photothermal performance of the radical anions under near‐infrared irradiation. It is anticipated that this method may lead to a novel bacteria‐responsive photothermal therapy to regulate balance of bacterial flora.  相似文献   

17.
Most Gram-negative bacteria are susceptible to polymyxin B (PxB), and development of resistance to this cationic lipopeptide is very rare. PxB mechanism of action involves interaction with both the outer membrane (OM) and the inner membrane (IM) of bacteria. For the design of new antibiotics based on the structure of PxB and with improved therapeutic indexes, it is essential to establish the key features of PxB that are important for activity. We have used an approach based on mimicking the outer layers of the OM and the IM of Gram-negative bacteria using monolayers of lipopolysaccharide (LPS) or anionic 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), respectively, and using a combination of penetration assay, analysis of pressure/area curves, and Brewster angle microscopy to monitor surface morphology changes. Synthetic analogue sp-B maintains the basic structural characteristics of the natural compound and interacts with the OM and the IM in a similar way. Analogue sp-C, with a mutation of the sequence [d-Phe6-Leu7] into [d-Phe6-Dab7], shows that this hydrophobic domain is involved in LPS binding. The significant role of the positive charges is demonstrated with sp-Dap analogue, where l-alpha,gamma-diaminobutyric acid residues Dab1 and Dab8 are replaced by l-alpha,gamma-diaminopropionic acid (Dap), resulting in lower degrees of insertion in both LPS and PG monolayers. The importance of the N-terminal acyl chain is demonstrated with polymyxin B nonapeptide (PxB-np). PxB-np shows lower affinity for LPS compared to PxB, sp-B, or sp-C, but it does not insert into PG monolayers, although it binds superficially to the anionic film. Since PxB microbial killing appears to be mediated by osmotic instability due to OM-IM phospholipid exchange, the ability of the different peptides to induce membrane-membrane lipid exchange has been studied by use of phospholipid unilamellar vesicles. Results indicate that cationic amphipathicity determines peptide activity.  相似文献   

18.
A lipid bilayer deposited on an electrode surface can serve as a benchmark system to investigate lipid–protein interactions in the presence of physiological electric fields. Recoverin and myelin‐associated glycoprotein (MAG) are used to study the impact of strong and weak protein–lipid interactions on the structure of model lipid bilayers, respectively. The structural changes in lipid bilayers are followed using electrochemical polarization modulation infrared reflection–absorption spectroscopy (PM IRRAS). Recoverin contains a myristoyl group that anchors in the hydrophobic part of a cell membrane. Insertion of the protein into the 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphatidylcholine (DMPC)–cholesterol lipid bilayer leads to an increase in the capacitance of the lipid film adsorbed on a gold electrode surface. The stability and kinetics of the electric‐field‐driven adsorption–desorption process are not affected by the interaction with protein. Upon interaction with recoverin, the hydrophobic hydrocarbon chains become less ordered. The polar head groups are separated from each other, which allows for recoverin association in the membrane. MAG is known to interact with glycolipids present on the surface of a cell membrane. Upon probing the interaction of the DMPC–cholesterol–glycolipid bilayer with MAG a slight decrease in the capacity of the adsorbed lipid film is observed. The stability of the lipid bilayer increases towards negative potentials. At the molecular scale this interaction results in minor changes in the structure of the lipid bilayer. MAG causes small ordering in the hydrocarbon chains region and an increase in the hydration of the polar head groups. Combining an electrochemical approach with a structure‐sensitive technique, such as PM IRRAS, is a powerful tool to follow small but significant changes in the structure of a supramolecular assembly.  相似文献   

19.
A hybrid supramolecular polymeric hydrogel is conveniently constructed via host–guest interaction of a host cyclodextrin polymer (poly‐CD) with a guest α‐bromonaphthalene polymer (poly‐BrNp) and mixing with 6‐thio‐β‐cyclodextrin (β‐SH‐CD) modified gold nanoparticles (GPCDs) in aqueous solution. According to the dynamic oscillatory data, the hydrogel exhibits markedly enhanced stiffness compared with the GPCD‐free one (both G′ and G“ values are almost twice as high as those of the original GPCD‐free hydrogel) due to the introduction of the inorganic gold nanoparticles. This hybrid supramolecular polymeric hydrogel has a rapid and excellent self‐healing property (only about 1 min, and the G′ and G” of the self‐healed hydrogel almost turned back to their original levels after 1 hour) in air (without adding any solvent or additive).  相似文献   

20.
Photo‐initiated supramolecular polymerization of a naphthalenediimide (NDI‐1) derivative containing an ortho‐nitrobenzyl (ONB)‐protected amide group is demonstrated. In a hydrocarbon solvent (methylcyclohexane), it remains as monomer. Upon photo‐irradiation, deprotection of the ONB group produces NDI‐2 with a free amide group, which drives supramolecular polymerization by self‐complementary H‐bonding between the amide groups, leading to gelation. The polymerization rate can be controlled by tuning the energy of the light source. During photopolymerization, a gradual increase in hydrodynamic radius and viscosity is noticed. More interestingly, the morphology of the supramolecular polymer of NDI‐2, produced by photo‐irradiation, was a spherulite, which is in sharp contrast with the fibrillar morphology of NDI‐2 polymer, when assembled spontaneously without a phototrigger. This is ascribed to the ability of the ONB‐caged pro‐monomer (NDI‐1) to act as a chain‐stopper by forming a H‐bonded complex with the active monomer during the growth of the supramolecular polymer under photo‐irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号