首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas-phase structures of protonated uracil, thymine, and cytosine are probed by using mid-infrared multiple-photon dissociation (IRMPD) spectroscopy performed at the Free Electron Laser facility of the Centre Laser Infrarouge d'Orsay (CLIO), France. Experimental infrared (IR) spectra are recorded for ions that were generated by electrospray ionization, isolated, and then irradiated in a quadrupole ion trap; the results are compared to the calculated infrared absorption spectra of the different low-lying isomers (computed at the B3LYP/6-31++G(d,p) level). For each protonated base, the global energy minimum corresponds to an enolic tautomer, whose infrared absorption spectrum matched very well with the experimental IRMPD spectrum, with the exception of a very weak IRMPD signal observed at about 1800 cm(-1) in the case of the three protonated bases. This signal is likely to be the signature of the second-energy-lying oxo tautomer. We thus conclude that within our experimental conditions, two tautomeric ions are formed which coexist in the quadrupole ion trap.  相似文献   

2.
Efforts to improve agricultural productivity have led to a growing dependency on organophosphorus pesticides. Phosphorothioate and phosphorodithioate pesticides are organophosphorus pesticide subclasses with widespread application for the control of insects feeding on vegetables and fruits. However, even low doses of these pesticides can cause neurological problems in humans; thus, their determination and monitoring in agricultural foodstuffs is important for human health. Phosphorothioate and phosphorodithioate pesticides may be poorly ionized during electrospray, adversely affecting limits of detection. These pesticides can form complexes with Cu2+ and Ag+, however, potentially improving ionization. In the present work, we used electrospray ionization/mass spectrometry (ESI/MS) to study fenitrothion, parathion, diazinon, and malathion coordination complexes with silver and copper ions. Stable 1 : 1 and 1 : 2 metal/pesticide complexes were detected. Mass spectra acquired from pesticide solutions containing Ag+ or Cu2+ showed a significant increase in signal‐to‐background ratio over those acquired from solutions containing only the pesticides, with Ag+ improving detection more effectively than Cu2+. Addition of Ag+ to a pesticide solution improved the limit of detection by ten times. The relative affinity of each pesticide for Ag+ was related to complex stability, following the order diazinon > malathion > fenitrothion > parathion. The formation of Ag+–pesticide complexes can significantly improve the detection of phosphorothioate and phosphorodithioate pesticides using ESI/MS. The technique could potentially be used in reactive desorption electrospray ionization/mass spectrometry to detect phosphorothioate and phosphorodithioate pesticides on fruit and vegetable skins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Preferred protonation : Does electrospray ionization mass spectrometry produce gas‐phase or liquid‐phase structures? The preferred protonation site in p‐aminobenzoic acid depends upon the medium, and the structure of its conjugate acid varies with the solvent used during spraying.

  相似文献   


4.
胞嘧啶、尿嘧啶和胸腺嘧啶都有酮式和烯醇式互变异构。有人认为DNA的错配频率,与酮,烯醇或氨,亚氨的互变异构平衡有关。迄今,在相同理论水平上同时对三种嘧啶互变异构体进行理论计算研究的文献较少,  相似文献   

5.
The mechanism of the Rh‐catalysed [2+2+2] cycloaddition reaction of diynes with monoynes has been examined using ESI‐MS and ESI‐CID‐MS analysis. The catalytic system used consisted of the combination of a cationic rhodium(I) complex with bisphosphine ligands, which generates highly active complexes that can be detected by ESI(+) experiments. ESI‐MS on‐line monitoring has allowed the detection for the first time of all of the intermediates in the catalytic cycle, supporting the mechanistic proposal based mainly on theoretical calculations. For all ESI‐MS experiments, the structural assignments of ions are supported by tandem mass spectrometry analyses. Computer model studies based on density functional theory (DFT) support the structural proposal made for the monoyne insertion intermediate. The collective studies provide new insight into the reactivity of cationic rhodacyclopentadienes, which should facilitate the design of related rhodium‐catalysed C? C couplings.  相似文献   

6.
A novel pathway for cytosine to uracil conversion performed in a micellar environment, leading to the generation of uridine monophosphate (UMP), was evidenced during the alkylation reaction of cytidine monophosphate (CMP) by dodecyl epoxide. Liquid chromatography‐electrospray ionization – ion trap ‐ mass spectrometry was used to separate and identify the reaction products and to follow their formation over time. The detection of hydroxy‐amino‐dodecane, concurrently with free UMP, in the reaction mixture suggested that, among the various alkyl‐derivatives formed, CMP alkylated on the amino group of cytosine could undergo tautomerization to an imine and hydrolytic deamination, generating UMP. Interestingly, no evidence for this peculiar conversion pathway was obtained when guanosine monophosphate (GMP), the complementary ribonucleotide of CMP, was also present in the reaction mixture, due to the fact that NH2‐alkylated CMP was not formed in this case. The last finding emphasized the role played by CMP–GMP molecular interactions, mediated by a micellar environment, in hindering the alkylation reaction at the level of the cytosine amino group. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Electrospray ionization mass spectrometry/mass spectrometry (ESI/MS/MS) and multiple stage mass spectrometry (MSn, n > 2) were used in the positive ion mode, with two different types of mass spectrometers, a quadrupole time‐of‐flight and an ion trap, to characterize two sets of different types of C60‐aminopyrimidine exohedral derivatives. In one set, the pyrimidine moiety bears an amino acid methyl ester residue, and in the other the pyrimidine ring is part of a nucleoside‐type moiety, the latter existing as two separated diastereoisomers. We have found that retro‐cycloaddition processes occur for the closed shell protonated species formed by electrospraying C60 derivatives synthesized by Diels–Alder reactions, whereas for the C60 derivatives synthesized via 1,3‐dipolar cycloadditions, these processes did not occur. Formation of diagnostic ions allowed the differentiation between the two groups of fullerene derivatives, and between the diastereoisomers of C60 derivatives with a nucleoside‐type moiety. In general, the fragmentation processes are strongly dependent on the protonation sites and on the structure of the exohedral moieties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The interactions of the nucleobases thymine (C5H6N2O2) and uracil (C4H4N2O2) with Cr‐doped C20 fullerene (C19Cr) are investigated by performing density functional theory calculations. The adsorption of these nucleobases on C19Cr leads to two distinct geometries (P1 and P2) differing in the orientation of the nucleobases. The interaction of the nucleobases with the C19Cr nanocluster is highly exothermic, revealing that they are chemically adsorbed on C19Cr. The results show that the binding energy of the thymine–C19Cr complex is slightly higher than that of the uracil–C19Cr complex. In addition, the P2 geometry is more stable compared to P1 due to the higher binding energy in the former configuration. However, based on the results of natural bond orbital and frontier molecular orbitals analyses, the C19Cr nanocage has higher reactivity with the nucleobases in P1 geometry in comparison with P2 due to the larger charge transfer and orbital hybridization in the former geometry. Moreover, the band gap of the C19Cr nanocage decreases after interaction with the nucleobases, and interestingly the impact is more pronounced for P1 geometry, confirming the higher sensitivity of C19Cr to the nucleobases in P1 geometry. Our findings reveal the promising potential of C19Cr as an organometallic carrier for nucleobases thymine and uracil.  相似文献   

9.
10.
The goals of the present study were (a) to create positively charged organo‐uranyl complexes with general formula [UO2(R)]+ (eg, R═CH3 and CH2CH3) by decarboxylation of [UO2(O2C─R)]+ precursors and (b) to identify the pathways by which the complexes, if formed, dissociate by collisional activation or otherwise react when exposed to gas‐phase H2O. Collision‐induced dissociation (CID) of both [UO2(O2C─CH3)]+ and [UO2(O2C─CH2CH3)]+ causes H+ transfer and elimination of a ketene to leave [UO2(OH)]+. However, CID of the alkoxides [UO2(OCH2CH3)]+ and [UO2(OCH2CH2CH3)]+ produced [UO2(CH3)]+ and [UO2(CH2CH3)]+, respectively. Isolation of [UO2(CH3)]+ and [UO2(CH2CH3)]+ for reaction with H2O caused formation of [UO2(H2O)]+ by elimination of ·CH3 and ·CH2CH3: Hydrolysis was not observed. CID of the acrylate and benzoate versions of the complexes, [UO2(O2C─CH═CH2)]+ and [UO2(O2C─C6H5)]+, caused decarboxylation to leave [UO2(CH═CH2)]+ and [UO2(C6H5)]+, respectively. These organometallic species do react with H2O to produce [UO2(OH)]+, and loss of the respective radicals to leave [UO2(H2O)]+ was not detected. Density functional theory calculations suggest that formation of [UO2(OH)]+, rather than the hydrated UVO2+, cation is energetically favored regardless of the precursor ion. However, for the [UO2(CH3)]+ and [UO2(CH2CH3)]+ precursors, the transition state energy for proton transfer to generate [UO2(OH)]+ and the associated neutral alkanes is higher than the path involving direct elimination of the organic neutral to form [UO2(H2O)]+. The situation is reversed for the [UO2(CH═CH2)]+ and [UO2(C6H5)]+ precursors: The transition state for proton transfer is lower than the energy required for creation of [UO2(H2O)]+ by elimination of CH═CH2 or C6H5 radical.  相似文献   

11.
The fate of modern personal care products in the environment is becoming a matter of increasing concern because of the growing production and assortment of these compounds. More and more chemicals of this class are treated as emerging contaminants. Transformation of commercially available products in the environment may result in the formation of a wide array of their metabolites. Personal care products in swimming pools and in drinking water reservoirs may undergo oxidation or chlorination. There is much data on the formation of more toxic metabolites from original low toxicity commercial products. Therefore, reliable identification of all possible transformation products and a thorough study of their physicochemical and biological properties are of high priority. The present study deals with the identification of the products of the aquatic chlorination of the hexyl 2‐[4‐(diethylamino)‐2‐hydroxybenzoyl]‐benzoate ultraviolet filter. High‐performance liquid chromatography/mass spectrometry (HPLC/MS) and HPLC/MS/MS with accurate mass measurements were used for this purpose. As a result, three chlorinated transformation products were identified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
2‐Furaldehyde (2‐FA), also known as furfural or 2‐furancarboxaldehyde, is an heterocyclic aldehyde that can be obtained from the thermal dehydration of pentose monosaccharides. This molecule can be considered as an important sustainable intermediate for the preparation of a great variety of chemicals, pharmaceuticals and furan‐based polymers. Despite the great importance of this molecule, its gas‐phase basicity (GB) has never been measured. In this work, the GB of 2‐FA was determined by the extended Cooks's kinetic method from electrospray ionization triple quadrupole tandem mass spectrometric experiments along with theoretical calculations. As expected, computational results identify the aldehydic oxygen atom of 2‐FA as the preferred protonation site. The geometries of O‐O‐cis and O‐O‐trans 2‐FA and of their six different protomers were calculated at the B3LYP/aug‐TZV(d,p) level of theory; proton affinity (PA) values were also calculated at the G3(MP2, CCSD(T)) level of theory. The experimental PA was estimated to be 847.9 ± 3.8 kJ mol?1, the protonation entropy 115.1 ± 5.03 J mol?1 K?1 and the GB 813.6 ± 4.08 kJ mol?1 at 298 K. From the PA value, a ΔH°f of 533.0 ± 12.4 kJ mol?1 for protonated 2‐FA was derived. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The sample solution of KNO3 is ejected into the gas phase and the ionic dusters of K+(KNO3)n and NO3 (KNO3)m are formed and observed by electrospray ionization mass spectrometry (ESIMS). Hie full mass spectra of both the positive ion and the negative ion show that the differences between each peak nearby are all about 101 (m/z), which correspond to the molecular weight of KNO3. The general formula of the ionic clusters can be assigned as K+(KNO3)n and NO3′‐(KNO3)m..  相似文献   

14.
A single gas‐assisted electrospray ion source developed for ambient mass spectrometry is introduced in this paper. Simultaneous self‐aspiration and electrospray could be achieved by using a constant sheath gas flow supplied from a mini air pump. A gas dynamic study of the spray module is carried out for structural optimization. The entire device exhibits a simplified design and has been systematically characterized through both simulated and experimental investigations. According to the results, the ion source exhibited satisfactory stability and the ability for quantitative operation in routine electrospray ionization mass spectrometry. Furthermore, the ion source can be operated as a desorption electrospray ionization source to perform direct desorption/ionization of the solid samples. The versatile source described here appears to provide a practical approach to perform ambient mass spectrometry analysis with unrestricted sampling operation, and the extensive gas dynamic studies together with the experimental characterization are believed to be helpful in building self‐aspirating spray devices. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The collision-induced dissociation of adenosine, uridine and guanosine, and their corresponding nucleobases has been published previously.1-3 Here we report the collision-induced dissociation of cytidine and the elucidation of its fragmentation pathways using stable isotope-labeled cytidines, through a quadrupole ion trap for tandem mass spectrometry up to MS(4). Furthermore, we investigated the collision-induced dissociation of five cytidine derivatives: 3-methylcytidine, N(4)-methyl-2'-deoxycytidine, 5-methylcytidine, 2-thiocytidine and N(4)-acetylcytidine. The primary fragmentation pathway was the neutral loss of ribose. MS(3) on the retained nucleobase generally resulted in an intense signal from the elimination of ammonia, but also in fragment ions characteristic of the different cytosine derivatives. On the basis of the MS(n) data, fragmentation pathways and plausible mechanisms are suggested.  相似文献   

16.
Detection of pesticide residues in food samples is important for safeguarding food quality and safety. Conventional approaches for detection of pesticides in food samples typically involve labour‐intensive and time‐consuming sample pretreatment and chromatographic separation. In this study, solid phase micro‐extraction fibres were used to rapidly extract and enrich pesticides in honey, a popular agricultural product with complex matrix, and then directly coupled with electrospray ionization mass spectrometry for qualitative and quantitative analysis. Three pesticides, ie, atrazine, benalaxyl, and pirimicarb, were investigated using the technique and their analytical performances were evaluated. The limits of detection and limits of quantitation of all the three pesticides could fulfil the cut‐off values of the international standard. Linear calibration curves were constructed with good R2 coefficients, and the accuracy and precision were in acceptable ranges for all the pesticides. The analysis time is much reduced, with only minimum sample preparation and no chromatographic separation involved. The technique is simple and easy to set up, and can be extended for analysis of other analytes and sample systems.  相似文献   

17.
18.
In this article, the effect of spray solvent on the analysis of selected lipids including fatty acids, fat‐soluble vitamins, triacylglycerols, steroids, phospholipids, and sphingolipids has been studied by two different ambient mass spectrometry (MS) methods, desorption electrospray ionization‐MS (DESI‐MS) and desorption atmospheric pressure photoionization‐MS (DAPPI‐MS). The ionization of the lipids with DESI and DAPPI was strongly dependent on the spray solvent. In most cases, the lipids were detected as protonated or deprotonated molecules; however, other ions were also formed, such as adduct ions (in DESI), [M‐H]+ ions (in DESI and DAPPI), radical ions (in DAPPI), and abundant oxidation products (in DESI and DAPPI). DAPPI provided efficient desorption and ionization for neutral and less polar as well as for ionic lipids but caused extensive fragmentation for larger and more labile compounds because of a thermal desorption process. DESI was more suitable for the analysis of the large and labile lipids, but the ionization efficiency for less polar lipids was poor. Both methods were successfully applied to the direct analysis of lipids from pharmaceutical and food products. Although DESI and DAPPI provide efficient analysis of lipids, the multiple and largely unpredictable ionization reactions may set challenges for routine lipid analysis with these methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Gas‐phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive‐ion electrospray spectra show that the interaction of di‐ and tri‐organotins with glycine results in the formation of [(R)2Sn(Gly)‐H]+and [(R)3Sn(Gly)]+ ions, respectively. Di‐organotin complexes appear much more reactive than those involving tri‐organotins. (MS/MS) spectra of the [(R)3Sn(Gly)]+ ions are indeed simple and only show elimination of intact glycine, generating the [(R)3Sn]+ carbocation. On the other hand, MS/MS spectra of [(R)2Sn(Gly)‐H]+complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of [(R)2SnOH]+ (?57 u),[(R)2SnNH2]+( ?58 u) and [(R)2SnH]+ (?73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of [(R2)SnOH]+and [(R2)SnNH2]+ions. Interestingly, formation [(R)2SnH]+ ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For [(R)2Sn(Gly)‐H]+complexes, a preferable bidentate interaction of the type η2‐O,NH2 is observed, similar to that encountered for other metal ions. [(R)3Sn]+ ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The gas‐phase interactions of cysteine with di‐organotin and tri‐organotin compounds have been studied by mass spectrometry experiments and quantum calculations. Positive‐ion electrospray spectra show that the interaction of di‐ and tri‐organotins with cysteine results in the formation of [(R)2Sn(Cys‐H)]+ and [(R)3Sn(Cys)]+ ions, respectively. MS/MS spectra of [(R)2Sn(Cys‐H)]+ complexes are characterized by numerous fragmentation processes, notably associated with elimination of NH3 and (C,H2,O2). Several dissociation routes are characteristic of each given organic species. Upon collision, both the [(R)3Sn(Gly)]+ and [(R)3Sn(Cys)]+ complexes are associated with elimination of the intact amino acid, leading to the formation of [(R)3Sn]+ cation. But for the latter complex, two additional fragmentation processes are observed, associated with the elimination of NH3 and C3H4O2S. Calculations indicate that the interaction between organotins and cysteine is predominantly electrostatic but also exhibits a considerable covalent character, which is slightly more pronounced in tri‐organotin complexes. A preferred bidentate interaction of the type ‐η2‐S‐NH2, with sulfur and the amino group, is observed. As for the [(R)3Sn(Cys)]+ complexes, their stability is due to the combination of the hydrogen bond taking place between the amino group and the sulfur lone pair and the interaction between the carboxylic oxygen atom and the metal. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号