首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of low-cost catalysts containing earth-abundant elements as alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR) is crucial for the large-scale commercial application of proton exchange membrane fuel cells (PEMFCs). Nonprecious metal–nitrogen–carbon (M-N-C) materials represent the most promising candidates to replace Pt-based catalysts for PEMFCs applications. However, the high-temperature pyrolysis process for the preparation of M-N-C catalysts frequently leads to high structural heterogeneity, that is, the coexistence of various metal-containing sites and N-doped carbon structures. Unfortunately, this impedes the identification of the predominant catalytic active structure, and thus, the further development of highly efficient M-N-C catalysts for the ORR. This Minireview, after a brief introduction to the development of M-N-C ORR catalysts, focuses on the commonly accepted views of predominant catalytic active structures in M-N-C catalysts, including atomically dispersed metal–Nx sites, metal nanoparticles encapsulated with nitrogen-doped carbon structures, synergistic action between metal–Nx sites and encapsulated metal nanoparticles, and metal-free nitrogen-doped carbon structures.  相似文献   

2.
The development of metal-N-C materials as efficient non-precious metal (NPM) catalysts for catalysing the oxygen reduction reaction (ORR) as alternatives to platinum is important for the practical use of proton exchange membrane fuel cells (PEMFCs). However, metal-N-C materials have high structural heterogeneity. As a result of their high-temperature synthesis they often consist of metal-Nx sites and graphene-encapsulated metal nanoparticles. Thus it is hard to identify the active structure of metal-N-C catalysts. Herein, we report a low-temperature NH4Cl-treatment to etch out graphene-encapsulated nanoparticles from metal-N-C catalysts without destruction of co-existing atomically dispersed metal-Nx sites. Catalytic activity is much enhanced by this selective removal of metallic nanoparticles. Accordingly, we can confirm the spectator role of graphene-encapsulated nanoparticles and the pivotal role of metal-Nx sites in the metal-N-C materials for ORR in the acidic medium.  相似文献   

3.
The notion of metal‐free catalysts is used to refer to carbon materials modified with nonmetallic elements. However, some claimed metal‐free catalysts are prepared using metal‐containing precursors. It is highly contested that metal residues in nitrogen‐doped carbon (NC) catalysts play a crucial role in the oxygen reduction reaction (ORR). In an attempt to reconcile divergent views, a definition for truly metal‐free catalysts is proposed and the differences between NC and M‐Nx/C catalysts are discussed. Metal impurities at levels usually undetectable by techniques such as XPS, XRD, and EDX significantly promote the ORR. Poisoning tests to mask the metal ions reveal the involvement of metal residues as active sites or as modifiers of the electronic structure of the active sites in NC. The unique merits of both M‐Nx/C and NC catalysts are discussed to inspire the development of more advanced nonprecious‐metal catalysts for the ORR.  相似文献   

4.
Atomic metal catalysis (AMC) provides an effective way to enhance activity for the oxygen reduction reaction (ORR). Cobalt anchored on nitrogen‐doped carbon materials have been extensively reported. The carbon‐hosted Co‐N4 structure was widely considered as the active site; however, it is very rare to investigate the activity of Co partially coordinated with N, for example, Co‐N4?xCx. Herein, the activity of Co‐N4?xCx with tunable coordination environment is investigated as the active sites for ORR catalysis. The defect (di‐vacancies) on carbon is essential for the formation of Co‐N4?xCx. N species play two important roles in promoting the intrinsic activity of atomic metal catalyst: N coordinated with Co to manipulate the reactivity by modification of electronic distribution and N helped to trap more Co to increase the number of active sites.  相似文献   

5.
Nitrogen‐doped CoO (N‐CoO) nanoparticles with high electrocatalytic activity for the oxygen‐reduction reaction (ORR) were fabricated by electrochemical reduction of CoCl2 in acetonitrile solution at cathodic potentials. The initially generated, highly reactive nitrogen‐doped Co nanoparticles were readily oxidized to N‐CoO nanoparticles in air. In contrast to their N‐free counterparts (CoO or Co3O4), N‐CoO nanoparticles with a N content of about 4.6 % exhibit remarkable ORR electrocatalytic activity, stability, and immunity to methanol crossover in an alkaline medium. The Co?Nx active sites in the CoO nanoparticles are held responsible for the high ORR activity. This work opens a new path for the preparation of nitrogen‐doped transition metal oxide nanomaterials, which are promising electrocatalysts for fuel cells.  相似文献   

6.
A bifunctional oxygen electrocatalyst composed of iron carbide (Fe3C) nanoparticles encapsulated by nitrogen doped carbon sheets is reported. X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure revealed the presence of several kinds of active sites (Fe?Nx sites, N doping sites) and the modulated electron structure of nitrogen doped carbon sheets. Fe3C@N‐CSs shows excellent oxygen evolution and oxygen reduction catalytic activity owing to the modulated electron structure by encapsulated Fe3C core via biphasic interfaces electron interaction, which can lower the free energy of intermediate, strengthen the bonding strength and enhance conductivity. Meanwhile, the contribution of the Fe?Nx sites, N doping sites and the effect of Fe3C core for the electrocatalytic oxygen reaction is originally revealed. The Fe3C@N‐CSs air electrode‐based zinc‐air battery demonstrates a high open circuit potential of 1.47 V, superior charge‐discharge performance and long lifetime, which outperforms the noble metal‐based zinc‐air battery.  相似文献   

7.
Two types of templates, an active metal salt and silica nanoparticles, are used concurrently to achieve the facile synthesis of hierarchical meso/microporous FeCo‐Nx‐carbon nanosheets (meso/micro‐FeCo‐Nx‐CN) with highly dispersed metal sites. The resulting meso/micro‐FeCo‐Nx‐CN shows high and reversible oxygen electrocatalytic performances for both ORR and OER, thus having potential for applications in rechargeable Zn–air battery. Our approach creates a new pathway to fabricate 2D meso/microporous structured carbon architectures for bifunctional oxygen electrodes in rechargeable Zn–air battery as well as opens avenues to the scale‐up production of rationally designed heteroatom‐doped catalytic materials for a broad range of applications.  相似文献   

8.
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.  相似文献   

9.
Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe‐N‐C structure and four‐times higher ORR activity loss when performing load cycling AST in O2‐ vs. Ar‐saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load‐cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X‐ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions.  相似文献   

10.
Single‐atom catalysts (SACs) are attracting widespread interest for the catalytic oxygen reduction reaction (ORR), with Fe?Nx SACs exhibiting the most promising activity. However, Fe‐based catalysts suffer serious stability issues as a result of oxidative corrosion through the Fenton reaction. Herein, using a metal‐organic framework as an anchoring matrix, we for the first time obtained pyrolyzed Cr/N/C SACs for the ORR, where the atomically dispersed Cr is confirmed to have a Cr?N4 coordination structure. The Cr/N/C catalyst exhibits excellent ORR activity with an optimal half‐wave potential of 0.773 V versus RHE. More excitingly, the Fenton reaction is substantially reduced and, thus, the final catalysts show superb stability. The innovative and robust active site for the ORR opens a new possibility to circumvent the stability issue of the non‐noble metal ORR catalysts.  相似文献   

11.
Low-temperature and selective reductive amination of carbonyl compounds is a highly promising approach to access primary amines. However, it remains a great challenge to conduct this attractive route efficiently over earth-abundant metal-based catalysts. Herein, we designed several Co-based catalysts (denoted as Co@C–N(x), where x represents the pyrolysis temperature) by the pyrolysis of the metal–organic framework ZIF-67 at different temperatures. Very interestingly, the prepared Co@C–N(800) could efficiently catalyze the reductive amination of various aldehydes/ketones to synthesize the corresponding primary amines with high yields at 35 °C. Besides non-noble metal and mild temperature, the other unique advantage of the catalyst was that the substrates with different reduction-sensitive groups could be converted into primary amines selectively because the Co-based catalyst was not active for these groups at low temperature. Systematic analysis revealed that the catalyst was composed of graphene encapsulated Co nanoparticles and atomically dispersed Co–Nx sites. The Co particles promoted the hydrogenation step, while the Co–Nx sites acted as acidic sites to activate the intermediate (Schiff base). The synergistic effect of metallic Co particles and Co–Nx sites is crucial for the excellent performance of the catalyst Co@C–N(800). To the best of our knowledge, this is the first study on efficient synthesis of primary amines via reductive amination of carbonyl compounds over earth-abundant metal-based catalysts at low temperature (35 °C).

An earth-abundant Co-based catalyst, Co@C–N(800), could efficiently catalyze the reductive amination of carbonyl compounds into primary amines at 35 °C owing to the synergistic effect of Co nanoparticles and atomically dispersed Co–Nx sites.  相似文献   

12.
A series of Fe3C/C‐Nx nanoparticles (NPs) with different nitrogen content are prepared by a simple one‐pot route. In the synthetic procedure, aniline and acetonitrile are simultaneously used as the carbon and nitrogen source. The effect of calcination temperature on the structural and functional properties of the materials is investigated. Magnetic measurement shows that the sample prepared at 800 °C (Fe3C/C‐N800 NPs) possesses the highest Ms value of 77.2 emu g?1. On testing as oxygen reduction reaction (ORR) catalysts, the sample prepared at 750 °C (Fe3C/C‐N750 NPs) shows the best ORR performance among the series, with a more positive onset potential (+0.99 V vs. RHE), higher selectivity (number of electron transfer n≈3.93), longer durability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 m KOH solution. Moreover, in acidic solution, the excellent ORR activity and stability are also exhibited.  相似文献   

13.
Exploring low‐cost and high‐performance nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries is crucial for the commercialization of these energy conversion and storage devices. Here we report a novel NPMC consisting of Fe3C nanoparticles encapsulated in mesoporous Fe‐N‐doped carbon nanofibers, which is synthesized by a cost‐effective method using carbonaceous nanofibers, pyrrole, and FeCl3 as precursors. The electrocatalyst exhibits outstanding ORR activity (onset potential of ?0.02 V and half‐wave potential of ?0.140 V) closely comparable to the state‐of‐the‐art Pt/C catalyst in alkaline media, and good ORR activity in acidic media, which is among the highest reported activities of NPMCs.  相似文献   

14.
Fundamental understanding of non‐precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high‐performance Fe‐N‐C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP‐MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNxCy species. Operando techniques combined with identical location‐scanning transmission electron spectroscopy (IL‐STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe‐N‐C catalysts in acidic medium.  相似文献   

15.
The oxygen reduction reaction (ORR) is of high industrial importance. There is a large body of literature showing that metal‐based catalytic nanoparticles (e.g. Co, Mn, Fe or hybrid Mn/Co‐based nanoparticles) supported on graphene act as efficient catalysts for the ORR. A significant research effort is also directed to the so‐called “metal‐free” oxygen reduction reaction on heteroatom‐doped graphene surfaces. While such studies of the ORR on nonmetallic heteroatom‐doped graphene are advertised as “metal‐free” there is typically no sufficient effort to characterize the doped materials to verify that they are indeed free of any trace metal. Here we argue that the claimed “metal‐free” electrocatalysis of the oxygen reduction reaction on heteroatom‐doped graphene is caused by metallic impurities present within the graphene materials.  相似文献   

16.
The electrocatalyzed oxygen reduction and evolution reactions (ORR and OER, respectively) are the core components of many energy conversion systems, including water splitting, fuel cells, and metal–air batteries. Rational design of highly efficient non-noble materials as bifunctional ORR/OER electrocatalysts is of great importance for large-scale practical applications. A new strongly coupled hybrid material is presented, which comprises CoOx nanoparticles rich in oxygen vacancies grown on B,N-decorated graphene (CoOx NPs/BNG) and operates as an efficient bifunctional OER/ORR electrocatalyst. Advanced spectroscopic techniques were used to confirm formation of abundant oxygen vacancies and strong Co−N−C bridging bonds within the CoOx NPs/BNG hybrid. Surprisingly, the CoOx NPs/BNG hybrid electrocatalyst is highly efficient for the OER with a low overpotential and Tafel slope, and is active in the ORR with a positive half-wave potential and high limiting current density in alkaline medium.  相似文献   

17.
A new strategy for achieving stable Co single atoms (SAs) on nitrogen‐doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal–organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X‐ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as‐generated N‐doped porous carbon. Surprisingly, the obtained Co‐Nx single sites exhibit superior ORR performance with a half‐wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non‐precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials.  相似文献   

18.
Fe/N/C single-atom catalysts containing Fe−Nx sites prepared by pyrolysis are promising cathode materials for fuel cells and metal-air batteries due to their high oxygen reduction reaction (ORR) activities. We have developed iron complexes containing N2- or N3-chelating coordination structures with preorganized aromatic rings in a 1,12-diazatriphenylene framework tethering bromo substituents as precursors to precisely construct Fe−N4 sites in an Fe/N/C catalyst. One-step pyrolysis of the iron complex with carbon black forms atomically dispersed Fe−N4 sites without iron aggregates. X-ray absorption spectroscopy (XAS) and electrochemical measurements revealed that the iron complex with N3-coordination is more effectively converted to Fe−N4 sites catalyzing ORR with a TOF value of 0.21 e site−1 s−1 at 0.8 V vs. RHE. This indicates that the formation of Fe−N4 sites is controlled by precise tuning of the chemical structure of the iron complex precursor.  相似文献   

19.
Rational design of non‐noble materials as highly efficient, economical, and durable bifunctional catalysts for oxygen evolution and reduction reactions (OER/ORR) is currently a critical obstacle for rechargeable metal‐air batteries. A new route involving S was developed to achieve atomic dispersion of Fe‐Nx species on N and S co‐decorated hierarchical carbon layers, resulting in single‐atom bifunctional OER/ORR catalysts for the first time. The abundant atomically dispersed Fe‐Nx species are highly catalytically active, the hierarchical structure offers more opportunities for active sites, and the electrical conductivity is greatly improved. The obtained electrocatalyst exhibits higher limiting current density and a more positive half‐wave potential for ORR, as well as a lower overpotential for OER under alkaline conditions. Moreover, a rechargeable Zn–air battery device comprising this hybrid catalyst shows superior performance compared to Pt/C catalyst. This work will open a new avenue to design advanced bifunctional catalysts for reversible energy storage and conversion devices.  相似文献   

20.
High‐performance non‐noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large‐scale utilization of fuel cells. Herein, a type of sandwiched‐like non‐noble electrocatalyst with highly dispersed FeNx active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom‐up strategy. The in situ ion substitution of Fe3+ in a nitrogen‐containing MOF (ZIF‐8) allows the Fe‐heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe‐doped ZIF‐8 nano‐crystals with graphene‐oxide and in situ reduction of graphene‐oxide afford a sandwiched‐like Fe‐doped ZIF‐8/graphene heterostructure. This type of heterostructure enables simultaneous optimization of FeNx active sites, architecture and interface properties for obtaining an electron‐catalyst after a one‐step carbonization. The synergistic effect of these factors render the resulting catalysts with excellent ORR activities. The half‐wave potential of 0.88 V vs. RHE outperforms most of the none‐noble metal catalyst and is comparable with the commercial Pt/C (20 wt %) catalyst. Apart from the high activity, this catalyst exhibits excellent durability and good methanol‐tolerance. Detailed investigations demonstrate that a moderate content of Fe dopants can effectively increase the intrinsic activities, and the hybridization of graphene can enhance the reaction kinetics of ORR. The strategy proposed in this work gives an inspiration towards developing efficient noble‐metal‐free electrocatalysts for ORR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号