首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A topological graph is a graph drawn in the plane. A topological graph is k-plane, k>0, if each edge is crossed at most k times. We study the problem of partitioning the edges of a k-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1, we focus on optimal 2-plane and on optimal 3-plane graphs, which are 2-plane and 3-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple (i.e., with neither self-loops nor parallel edges) optimal 2-plane graph into a 1-plane graph and a forest, while (ii) an edge partition formed by a 1-plane graph and two plane forests always exists and can be computed in linear time. (iii) There exist efficient algorithms to partition the edges of a simple optimal 2-plane graph into a 1-plane graph and a plane graph with maximum vertex degree at most 12, or with maximum vertex degree at most 8 if the optimal2-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) There exists an infinite family of simple optimal 2-plane graphs such that in any edge partition composed of a 1-plane graph and a plane graph, the plane graph has maximum vertex degree at least 6 and the 1-plane graph has maximum vertex degree at least 12. (v) Every optimal 3-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 2-plane graph and two plane forests.  相似文献   

3.
《Discrete Mathematics》2021,344(12):112600
An (m,n)-colored-mixed graph G=(V,A1,A2,,Am,E1,E2,,En) is a graph having m colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints. A homomorphism from an (m,n)-colored-mixed graph G to another (m,n)-colored-mixed graph H is a morphism φ:V(G)V(H) such that each edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). An (m,n)-colored-mixed graph T is said to be Pg(m,n)-universal if every graph in Pg(m,n) (the planar (m,n)-colored-mixed graphs with girth at least g) admits a homomorphism to T.We show that planar Pg(m,n)-universal graphs do not exist for 2m+n3 (and any value of g) and find a minimal (in the number vertices) planar Pg(m,n)-universal graphs in the other cases.  相似文献   

4.
In Thomassen (1995) [4], Thomassen proved that planar graphs of girth at least 5 are 3-choosable. In Li (2009) [3], Li improved Thomassen’s result by proving that planar graphs of girth 4 with no 4-cycle sharing a vertex with another 4- or 5-cycle are 3-choosable. In this paper, we prove that planar graphs of girth 4 with no 4-cycle sharing an edge with another 4- or 5-cycle are 3-choosable. It is clear that our result strengthens Li’s result.  相似文献   

5.
6.
We view an undirected graph G as a symmetric digraph, where each edge xy is replaced by two opposite arcs e=(x,y) and e?1=(y,x). Assume S is an inverse closed subset of permutations of positive integers. We say G is S-k-colourable if for any mapping σ:E(G)S with σ(x,y)=(σ(y,x))?1, there is a mapping f:V(G)[k]={1,2,,k} such that σe(f(x))f(y) for each arc e=(x,y). The concept of S-k-colourable is a common generalization of several other colouring concepts. This paper is focused on finding the sets S such that every triangle-free planar graph is S-3-colourable. Such a set S is called TFP-good. Grötzsch’s theorem is equivalent to say that S={id} is TFP-good. We prove that for any inverse closed subset S of S3 which is not isomorphic to {id,(12)}, S is TFP-good if and only if either S={id} or there exists a[3] such that for each πS, π(a)a. It remains an open question to determine whether or not S={id,(12)} is TFP-good.  相似文献   

7.
8.
Let G be a plane graph of girth at least 4. Two cycles of G are intersecting if they have at least one vertex in common. In this paper, we show that if a plane graph G has neither intersecting 4-cycles nor a 5-cycle intersecting with any 4-cycle, then G is 3-choosable, which extends one of Thomassen’s results [C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995) 101-107].  相似文献   

9.
In this article, we use a unified approach to prove several classes of planar graphs are DP-3-colorable, which extend the corresponding results on 3-choosability.  相似文献   

10.
11.
Let N be the set of all positive integers. A list assignment of a graph G is a function L:V(G)?2N that assigns each vertex v a list L(v) for all vV(G). We say that G is L-(2,1)-choosable if there exists a function ? such that ?(v)L(v) for all vV(G), |?(u)??(v)|2 if u and v are adjacent, and |?(u)??(v)|1 if u and v are at distance 2. The list-L(2,1)-labeling number λl(G) of G is the minimum k such that for every list assignment L={L(v):|L(v)|=k,vV(G)}, G is L-(2,1)-choosable. We prove that if G is a planar graph with girth g8 and its maximum degree Δ is large enough, then λl(G)Δ+3. There are graphs with large enough Δ and g8 having λl(G)=Δ+3.  相似文献   

12.
A (k,d)-list assignment L of a graph G is a mapping that assigns to each vertex v a list L(v) of at least k colors satisfying |L(x)L(y)|d for each edge xy. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. In this paper, we prove that any planar graph G is (3,1)-choosable if any i-cycle is not adjacent to a j-cycle, where 5i6 and 5j7.  相似文献   

13.
14.
In 1995, Voigt constructed a planar triangle-free graph that is not 3-list-colorable. It has 166 vertices. Gutner then constructed such a graph with 164 vertices. We present two more graphs with these properties. The first graph has 97 vertices and a failing list assignment using triples from a set of six colors, while the second has 109 vertices and a failing list assignment using triples from a set of five colors.  相似文献   

15.
16.
17.
In 2009, Kyaw proved that every n-vertex connected K1,4-free graph G with σ4(G)n?1 contains a spanning tree with at most 3 leaves. In this paper, we prove an analogue of Kyaw’s result for connected K1,5-free graphs. We show that every n-vertex connected K1,5-free graph G with σ5(G)n?1 contains a spanning tree with at most 4 leaves. Moreover, the degree sum condition “σ5(G)n?1” is best possible.  相似文献   

18.
In this paper, we mainly prove that planar graphs without 4-, 7- and 9-cycles are 3-colorable.  相似文献   

19.
DP-coloring (also known as correspondence coloring) is a generalization of list coloring introduced by Dvo?ák and Postle in 2017. In this paper, we prove that every planar graph without 4-cycles adjacent to k-cycles is DP-4-colorable for k=5 and 6. As a consequence, we obtain two new classes of 4-choosable planar graphs. We use identification of vertices in the proof, and actually prove stronger statements that every pre-coloring of some short cycles can be extended to the whole graph.  相似文献   

20.
《Discrete Mathematics》2022,345(4):112790
DP-coloring of graphs as a generalization of list coloring was introduced by Dvo?ák and Postle (2018). In this paper, we show that every planar graph without intersecting 5-cycles is DP-4-colorable, which improves the result of Hu and Wu (2017), who proved that every planar graph without intersecting 5-cycles is 4-choosable, and the results of Kim and Ozeki (2018).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号