首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultralong organic phosphorescence (UOP) based on metal‐free porous materials is rarely reported owing to rapid nonradiative transition under ambient conditions. In this study, hydrogen‐bonded organic aromatic frameworks (HOAFs) with different pore sizes were constructed through strong intralayer π–π interactions to enable ultralong phosphorescence in metal‐free porous materials under ambient conditions for the first time. Impressively, yellow UOP with a lifetime of 79.8 ms observed for PhTCz‐1 lasted for several seconds upon ceasing the excitation. For PhTCz‐2 and PhTCz‐3, on account of oxygen‐dependent phosphorescence quenching, UOP could only be visualized in N2, thus demonstrating the potential of phosphorescent porous materials for oxygen sensing. This result not only outlines a principle for the design of new HOFs with high thermal stability, but also expands the scope of metal‐free luminescent materials with the property of UOP.  相似文献   

2.
Two‐component self‐assembly is a promising approach to construct functional nanomaterials. Interaction of a flexible guanidiniocarbonyl pyrrole tetra‐cation ( 1 ) with naphthalene diimide dicarboxylic acid (NDIDC) in aqueous DMSO leads to the formation of supramolecular networks. First, the carboxylate groups of NDIDC bind to the guanidiniocarbonyl pyrrole cations of 1 in a 1:2 stoichiometry. Further π–π induced aggregation then leads to 3D networks, as established by dynamic light scattering studies (DLS), NMR, fluorescence titration, viscosity measurements, AFM, and TEM microscopy. Due to ion pairing, the resulting aggregates can be switched between the monomers and the aggregates reversibly using external stimuli like protonation or deprotonation. At high concentration, a stable colloidal solution is formed, which shows an extensive Tyndall effect. Increasing the concentrations even further leads to formation of a supramolecular gel.  相似文献   

3.
Prolonged drug residence times may result in longer‐lasting drug efficacy, improved pharmacodynamic properties, and “kinetic selectivity” over off‐targets with high drug dissociation rates. However, few strategies have been elaborated to rationally modulate drug residence time and thereby to integrate this key property into the drug development process. Herein, we show that the interaction between a halogen moiety on an inhibitor and an aromatic residue in the target protein can significantly increase inhibitor residence time. By using the interaction of the serine/threonine kinase haspin with 5‐iodotubercidin (5‐iTU) derivatives as a model for an archetypal active‐state (type I) kinase–inhibitor binding mode, we demonstrate that inhibitor residence times markedly increase with the size and polarizability of the halogen atom. The halogen–aromatic π interactions in the haspin–inhibitor complexes were characterized by means of kinetic, thermodynamic, and structural measurements along with binding‐energy calculations.  相似文献   

4.
5.
A series of N ‐arylimide molecular balances were designed to study and measure fluorine–aromatic (F–π) interactions. Fluorine substituents gave rise to increasingly more stabilizing interactions with more electron‐deficient aromatic surfaces. The attractive F–π interaction is electrostatically driven and is stronger than other halogen–π interactions.  相似文献   

6.
Three compounds with phenyl and pentafluorophenyl rings bridged by (CH2)3 and (CH2)2SiMe2 units were synthesized by hydrosilylation and C−C coupling reactions. Their solid‐state structures are dominated by intermolecular π stacking interactions, primarily leading to dimeric or chain‐type aggregates. Analysis of free molecules in the gas phase by electron diffraction revealed the most abundant conformer to be significantly stabilized by intramolecular π–π interactions. For the silicon compounds, structures characterized by σ–π interactions between methyl and pentafluorophenyl groups are second lowest in energy and cannot be excluded completely by the gas electron diffraction experiments. C6H5(CH2)3C6F5, in contrast, is present as a single conformer. The gas‐phase structures served as a reference for the evaluation of a series of (dispersion‐corrected) quantum‐chemical calculations.  相似文献   

7.
8.
Herein, we address the question whether anion–π and cation–π interactions can take place simultaneously on the same aromatic surface. Covalently positioned carboxylate–guanidinium pairs on the surface of 4‐amino‐1,8‐naphthalimides are used as an example to explore push–pull chromophores as privileged platforms for such “ion pair–π” interactions. In antiparallel orientation with respect to the push–pull dipole, a bathochromic effect is observed. A red shift of 41 nm found in the least polar solvent is in good agreement with the 70 nm expected from theoretical calculations of ground and excited states. Decreasing shifts with solvent polarity, protonation, aggregation, and parallel carboxylate–guanidinium pairs imply that the intramolecular Stark effect from antiparallel ion pair–π interactions exceeds solvatochromic effects by far. Theoretical studies indicate that carboxylate–guanidinium pairs can also interact with the surfaces of π‐acidic naphthalenediimides and π‐basic pyrenes.  相似文献   

9.
The intrinsic features of (hetero‐arene)–metal interactions have been elusive mainly because the systematic structure analysis of non‐anchored hetero‐arene–metal complexes has been hampered by their labile nature. We report successful isolation and systematic structure analysis of a series of non‐anchored indole–palladium(II) complexes. It was revealed that there is a σ–π continuum for the indole–metal interaction, while it has been thought that the dominant coordination mode of indole to a metal center is the Wheland‐intermediate‐type σ‐mode in light of the seemingly strong electron‐donating ability of indole. Several factors which affect the σ‐ or π‐character of indole–metal interactions are discussed.  相似文献   

10.
11.
12.
The role of CH–π and CF–π interactions in determining the structure of N‐heterocyclic carbene (NHC) palladium complexes were studied using 1H NMR spectroscopy, X‐ray crystallography, and DFT calculations. The CH–π interactions led to the formation of the cisanti isomers in 1‐aryl‐3‐isopropylimidazol‐2‐ylidene‐based [(NHC)2PdX2] complexes, while CF–π interactions led to the exclusive formation of the cis‐syn isomer of diiodobis(3‐isopropyl‐1‐pentafluorophenylimidazol‐2‐ylidene) palladium(II).  相似文献   

13.
Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures.  相似文献   

14.
Using ferrocenecarboxylic acid (FcCOOH) as organometallic ligand in the synthesis of heterometallic complexes led to the isolation of the compound [(FcCOO)Cu(bpy)2](BF4) · bpy · CH3OH. It was characterized by IR spectroscopy, EA, powder XRD, UV, and TGA measurements. Single‐crystal X‐ray structural analysis revealed that a unique 2D supramolecular network purely formed by aromatic π ··· π stacking interactions was observed, namely, {[(FcCOO)Cu(bpy)2](BF4) · bpy · CH3OH} ( 1 ). The solid UV/Vis diffuse reflectance spectrum revealed the optical energy gap of 1 to be 3.54 eV, which is dramatically blue shifted compared with the value of ferrocene. Experimental results of thermal analysis and electrochemical analysis show that 1 has good thermal and better electrochemical stability.  相似文献   

15.
Weak intermolecular interactions in organic semiconducting molecular crystals play an important role in determining molecular packing and electronic properties. Single crystals of metal‐free and metal phthalocyanines were synthesized to investigate how the coordination of the central metal atom affects their molecular packing and resultant electronic properties. Single‐crystal field‐effect transistors were made and showed a hole mobility order of ZnPc>MnPc>FePc>CoPc>CuPc>H2Pc>NiPc. Density functional theory (DFT) and 1D polaron transport theory reach a good agreement in reproducing the experimentally measured trend for hole mobility. Additional detail analysis at the DFT level suggests the metal atom coordination into H2Pc planes can tune the hole mobility via adjusting the intermolecular distances along the shortest axis with closest parallel π stackings.  相似文献   

16.
17.
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems.  相似文献   

18.
19.
Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion–π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π‐acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π‐acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α‐protons in the 1H NMR spectra. The reactivity of these protons on π‐acidic surfaces is measured by hydrogen–deuterium (H–D) exchange for 11 different examples, excluding controls. The velocity of H–D exchange increases with π acidity (NDI core substituents: SO2R>SOR>H>OR>OR/NR2>SR>NR2). The H–D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11–13 atoms). Most importantly, H–D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)‐macrocycle is reported). For maximal π acidity, transition‐state stabilizations up to ?18.8 kJ mol?1 are obtained for H–D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa=10.9 calculates to a ΔpKa=?5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as “impossible” in biology, the found enolate–π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven‐component π‐acidity gradient over almost 1 eV demonstrates quantitatively that such important anion–π activities can be expected only from strong enough π acids.  相似文献   

20.
Dioxobis(pyridine‐2‐thiolate‐N, S)molybdenum(VI) (MoO2(Py‐S)2), reacts with of 4‐methylpyridine (4‐MePy) in acetonitrile, by slow diffusion, to afford the title compound. This has been characterized by elemental analysis, IR and 1H NMR spectroscopy. The X‐ray single crystal structure of the complex is described. Structural studies reveal that the molecular structure consists of a β‐Mo8O26 polyanion with eight MoO6 distorted edge‐shared octahedra with short terminal Mo–O bonds (1.692–1.714 Å), bonds of intermediate length (1.887–1.999 Å) and long bonds (2.150–2.473 Å). Two different types of hydrogen bonds have been found: N–H···O (2.800–3.075 Å) and C–H···O (3.095–3.316 Å). The presence of π–π stacking interactions and strong hydrogen bonds are presumably responsible for the special disposition of the pyridinic rings around the polyanion cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号