首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudohalogens are defined as molecular entities that resemble the halogens in their chemistry. While our understanding of polyhalogen chemistry has increased over the last years, research on polypseudohalogen compounds is lacking. The pseudohalogen BrCN possesses a highly pronounced σ‐hole at the bromine side of the molecule, inducing strong halogen bonding. This allows the synthesis and characterization of new polypseudohalogen anions, as shown by the single‐crystal X‐ray diffraction of [PNP][Br(BrCN)] and [PNP][Br(BrCN)3]. Both the nearly linear anion [Br(BrCN)]? and the distorted pyramidal anion [Br(BrCN)3]? were characterized by Raman spectroscopy and quantum‐chemical calculations. The behavior of the polypseudohalogen compounds in solution and as room‐temperature ionic liquids (RT‐ILs) using the [NBu4]+ cation was studied by 13C and 15N NMR spectroscopy. These types of ILs are capable of dissolving elemental gold and offer themselves as promising compounds in metal recycling.  相似文献   

2.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

3.
Significant progress in the development of efficient and fast algorithms for quantum chemical calculations has been made in the past two decades. The main focus has always been the desire to be able to treat ever larger molecules or molecular assemblies—especially linear and sublinear scaling techniques are devoted to the accomplishment of this goal. However, as many chemical reactions are rather local, they usually involve only a limited number of atoms so that models of about 200 (or even less) atoms embedded in a suitable environment are sufficient to study their mechanisms. Thus, the system size does not need to be enlarged, but remains constant for reactions of this type that can be described by less than 200 atoms. The question then arises how fast one can obtain the quantum chemical results. This question is not directly answered by linear‐scaling techniques. In fact, ideas such as haptic quantum chemistry (HQC) or interactive quantum chemistry require an immediate provision of quantum chemical information which demands the calculation of data in “real time.” In this perspective, we aim at a definition of real‐time quantum chemistry, explore its realm and eventually discuss applications in the field of HQC. For the latter, we elaborate whether a direct approach is possible by virtue of real‐time quantum chemistry. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The bonding environments of some polybromide monoanions and networks were examined by quantum‐chemical methods to investigate electronic interactions between dibromine–dibromine contacts. Examination of thermodynamic parameters and a bond critical point analysis give strong evidence for such bonding modes, which have been previously treated disparately in the literature. The thermodynamic stability of large polybromides up to [Br37]? was also predicted by these methods.  相似文献   

5.
The calculations of NMR properties of molecules using quantum chemical methods have deeply impacted several branches of organic chemistry. They are particularly important in structural or stereochemical assignments of organic compounds, with implications in total synthesis, stereoselective reactions, and natural products chemistry. In studying the evolution of the strategies developed to support (or reject) a structural proposal, it becomes clear that the most effective and accurate ones involve sophisticated procedures to correlate experimental and computational data. Owing to their relatively high mathematical complexity, such calculations (CP3, DP4, ANN‐PRA) are often carried out using additional computational resources provided by the authors (such as applets or Excel files). This Minireview will cover the state‐of‐the‐art of these toolboxes in the assignment of organic molecules, including mathematical definitions, updates, and discussion of relevant examples.  相似文献   

6.
Aerosols significantly influence atmospheric processes such as cloud nucleation, heterogeneous chemistry, and heavy-metal transport in the troposphere. The chemical and physical complexity of atmospheric aerosols results in large uncertainties in their climate and health effects. In this article, we review recent advances in scientific understanding of aerosol processes achieved by the application of quantum chemical calculations. In particular, we emphasize recent work in two areas: new particle formation and heterogeneous processes. Details in quantum chemical methods are provided, elaborating on computational models for prenucleation, secondary organic aerosol formation, and aerosol interface phenomena. Modeling of relative humidity effects, aerosol surfaces, and chemical kinetics of reaction pathways is discussed. Because of their relevance, quantum chemical calculations and field and laboratory experiments are compared. In addition to describing the atmospheric relevance of the computational models, this article also presents future challenges in quantum chemical calculations applied to aerosols.  相似文献   

7.
介绍了一个面向高年级本科生的研究型计算化学实验。主族元素AB4型含氧酸根是无机和结构化学理论课程中讨论化学键类型的例子,然而其结果却存在争议。本实验利用常用量子化学软件,通过计算化学方法分析化学成键,验证猜测,并得出结论。旨在通过本实验,锻炼学生对量子化学计算方法的运用,进而加深对化学基础知识的理解。  相似文献   

8.
This account discusses representative case studies for various applications of quantum chemical calculations in synthetic organic chemistry. These include confirmation of target structures, methodology development, and catalyst design. These examples demonstrate how predictions from quantum chemical calculations can be utilized to streamline synthetic efforts.  相似文献   

9.
The search for main‐group element‐based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element‐centered radicals mainly feature a V‐shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris‐amide ligand. The selective one‐electron reduction of R3E afforded the first stable tricoordinate pnictogen‐centered radical anion salts; the pnictogen atoms retain planar T‐shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.  相似文献   

10.
A comparison of the concept of volume increments created by W. Biltz with that based on quantum mechanical calculations by R.F.W. Bader was performed for crystal structures of binary metal nitrides and ‐subnitrides. The mutual comparison of both concepts permits insights into the bonding relationships of these compounds and reveals the considerable range of volume demand of a strongly polarisable bonding partner, such as the nitride ion. Finally it becomes clear that the Biltz volume increments show a quantum‐chemical relevance in the chemistry of solids.  相似文献   

11.
Various examples are given in which compounds are characterized as products or intermediates in a (distorted) trigonal pyramidal (TP) geometry. These observations have taken place mainly in the field of carbocation chemistry. Special attention is given to carbenium ions formed by halogen addition to 1,1‐diarylsubstituted ethylenes focused on the electronic effects of the C‐halogen bond as axial bond in a TP geometry with regard to the π‐distribution in the rest of the molecular system. The experimental verification is accompanied by quantum chemical calculations. We also used the TP structure as a reactive model for specific enzymatic reactions. The relevance of this geometry is shown for the dehalogenation reaction of the nucleophilic displacement in dichloroethane catalyzed by haloalkane dehalogenase and for the decarboxylation of L ‐ornithine with ornithine decarboxylase under loss of carbon dioxide. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
The field of quantum chemistry experienced huge progress in the past two decades. The drivers for this have been the availability of more and more powerful computer hardware, the development and implementation of improved methods with a better balanced compromise between accuracy and efficiency, as well as pioneering work how these methods are successfully applied to real‐world problems. Thus, quantum calculations, in particular via density functional theory, became an essential tool in many branches of chemical research. This article tries to give an overview how quantum chemical modeling is used in chemical industry, which is done by reviewing papers written by authors from chemical companies. Various topics of particular industrial relevance are introduced together with strategies how to address them via quantum calculations. Examples are the computation of reaction thermodynamics and kinetics as the key ingredients to understand and predict chemical reactivity, but also solvation models as well as methods to describe electronically excited states. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Since the start of this millennium, remarkable progress in the binding and sensing of anions has been taking place, driven in part by discoveries in the use of hydrogen bonding, as well as the previously under‐exploited anion–π interactions and halogen bonding. However, anion supramolecular chemistry has developed substantially beyond anion recognition, and now encompasses a diverse range of disciplines. Dramatic advance has been made in the anion‐templated synthesis of macrocycles and interlocked molecular architectures, while the study of transmembrane anion transporters has flourished from almost nothing into a rapidly maturing field of research. The supramolecular chemistry of anions has also found real practical use in a variety of applications such as catalysis, ion extraction, and the use of anions as stimuli for responsive chemical systems.  相似文献   

14.
Gas‐phase intrinsic structures of intact neutral and anionic glutathione (GSH) have been determined by means of a combination of negative ion photo‐electron spectroscopy and quantum chemistry calculations. The inferred structures of the neutral parents of those peptide anions are canonical (non‐zwitterionic). These intrinsic structures are compared to those already known in aqueous solution or determined by crystallography in binding sites of enzymes.  相似文献   

15.
Physical chemistry is considered to be a scientifically abstract and mathematically intensive course in the undergraduate chemistry curriculum. To most students, the physical chemistry course involves a semester that deals with macroscopic properties and another that deals with microscopic evaluations of chemical systems. They often fail to see the importance of statistical mechanics in making the connection between the content of the two semesters. In this paper, we propose a computational exercise that complements a simple physical chemistry experiment that can be used to understand the chemical basis of a macroscopic property such as the heat capacity of gases using microscopic (classical and quantum) mechanics. Students are given the opportunity to use (1) computational chemistry software to calculate the contributions of translational, rotational, and vibrational motion to the energy of molecules; (2) a graphing program to study the linear and nonlinear dependence of energy on temperature; (3) classical, quantum, and statistical mechanical theory to verify experimental data; (4) regression analysis to approximate the heat capacity constant of simple gases from energy calculations.  相似文献   

16.
17.
In this contribution we introduce an electronic‐structure‐theory‐based approach to a quantum‐chemical thermochemistry of solids. We first deal with local and collective atomic displacements and explain how to calculate these. The fundamental importance of the phonons, their dispersion relations, their experimental determination as well as their calculation is elucidated, followed by the systematic construction of the thermodynamic potentials on this basis. Subsequently, we provide an introduction for practical computation as well as a critical analysis of the level of accuracy obtainable. We then show how different solid‐state chemistry problems can be solved using this approach. Among these are the calculation of activation energies in perovskite‐like oxides, but we also consider the use of theoretical vibrational frequencies for determining crystal structures. The pressure and temperature polymorphism of elemental tin which has often been classically described is also treated, and we energetically classify the metastable oxynitrides of tantalum. We also demonstrate, using the case of high‐temperature superconductors, that such calculations may be used for an independent evaluation of thermochemical data of unsatisfactory accuracy. Finally, we show the present limits and the future challenges of the theory.  相似文献   

18.
Nucleophilic substitution of F atoms in 5,6‐difluorobenzo[c ][1,2,5]thiadiazole (DFBT) for carbazole could be potentially interesting as a novel way of synthesizing building blocks for new conjugated materials for applications in organic chemistry. The crystal structures of 5,6‐bis(9H‐carbazol‐9‐yl)benzo[c ][1,2,5]thiadiazole (DCBT), C30H18N4S, and its hydrate, C30H18N4S·0.125H2O, were investigated using single‐crystal X‐ray analysis. The hydrate contains two symmetry‐independent DCBT molecules. The dihedral angles between the plane of the central benzothiadiazole fragment and that of the carbazole units vary between 50.8 and 69.9°, indicating conformational flexibility of the DCBT molecule in the crystals, which is consistent with quantum chemical calculations. The analysis of the crystal packing of DCBT revealed that the experimental triclinic structure could be described as a distortion from a hypothetical higher‐symmetry monoclinic structure. The quantum chemical calculations of two possible monoclinic structures, which are related to the experimental structure by a shifting of molecular layers, showed that the proposed structures are higher in energy by 5.4 and 10.1 kcal mol−1. This energy increase is caused by less dense crystal packings of the symmetric structures, which results in a decrease of the number of intermolecular interactions.  相似文献   

19.
Herein, we report on the synthesis, protonation, and coordination chemistry of chelating guanidine ligands with biphenyl, binaphthyl, and bipyridyl backbones. The ligands are shown to be proton sponges, and this protonation was studied experimentally and by using quantum‐chemical calculations. Group 10 metal (Ni, Pd, and Pt) complexes with different metal/ligand ratios were synthesized. In the case of the bipyridyl systems, coordination occurs exclusively at the pyridine N atoms, as opposed to protonation. The spin‐density distribution and the magnetism were evaluated for a series of paramagnetic NiII complexes with the aid of paramagnetic NMR spectroscopic studies in alliance with quantum‐chemical calculations and magnetic (SQUID) measurements. Through direct delocalization from the singly occupied molecular orbitals (SOMOs), a significant amount of spin density is placed on the guanidinyl groups, and spin polarization also transports spin density onto the aromatic backbone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号