首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Amino acid‐derived chiral imidazolium salts, each bearing a pyridine ring, were developed as N‐heterocyclic carbene ligands. The copper‐catalyzed asymmetric alkylation of various N‐sulfonylimines with dialkylzinc reagents in the presence of these chiral imidazolium salts afforded the corresponding alkylated products with high enantioselectivity (up to 99 % ee). The addition of HMPA to the reaction mixture as a co‐solvent is critical in terms of chemical yield and enantioselectivity. A wide range of N‐sulfonylimines and dialkylzinc reagents were found to be applicable to this reaction.  相似文献   

2.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

3.
A highly enantioselective iridium‐ or ruthenium‐catalyzed intermolecular reductive amination/asymmetric hydrogenation relay with 2‐quinoline aldehydes and aromatic amines has been developed. A broad range of sterically tunable chiral N,N′‐diaryl vicinal diamines were obtained in high yields (up to 95 %) with excellent enantioselectivity (up to >99 % ee). The resulting chiral diamines could be readily transformed into sterically hindered chiral N‐heterocyclic carbene (NHC) precursors, which are otherwise difficult to access. The usefulness of this synthetic approach was further demonstrated by the successful application of one of the chiral vicinal diamines and chiral NHC ligands in a transition‐metal‐catalyzed asymmetric Suzuki–Miyaura cross‐coupling reaction and asymmetric ring‐opening cross‐metathesis, respectively.  相似文献   

4.
PdII‐catalyzed enantioselective C(sp3)?H cross‐coupling of free carboxylic acids with organoborons has been realized using either mono‐protected amino acid (MPAA) ligands or mono‐protected aminoethyl amine (MPAAM) ligands. A diverse range of aryl‐ and vinyl‐boron reagents can be used as coupling partners to provide chiral carboxylic acids. This reaction provides an alternative approach to the enantioselective synthesis of cyclopropanecarboxylic acids and cyclobutanecarboxylic acids containing α‐chiral tertiary and quaternary stereocenters. The utility of this reaction was further demonstrated by converting the carboxylic acid into cyclopropyl amine without loss of optical activity.  相似文献   

5.
Nucleophilic addition of organometallic reagents to carbonyl substrates constitutes one of the most fundamental operations in organic synthesis. Modification of the organometallic compounds by chiral, nonracemic auxiliaries offers a general opportunity to create optically active alcohols, and the catalytic version in particular provides maximum synthetic efficiency. The use of organozinc chemistry, unlike conventional organolithium or -magnesium chemistry, has realized an ideal catalytic enantioselective alkylation of aldehydes leading to a diverse array of secondary alcohols of high optical purity. A combination of dialkylzinc compounds and certain sterically constrained β-dialkylamino alcohols, such as (–)-3-exo-dimethylaminoiso- borneol [(–)-DAIB], as chiral inducers affords the best result (up to 99% ee). The alkyl transfer reaction occurs via a dinuclear Zn complex containing a chiral amino alkoxide, an aldehyde ligand, and three alkyl groups. The chiral multiplication method exhibits enormous chiral amplification: a high level of enantioselection (up to 98%) is attainable by use of DAIB in 14% ee. This unusual nonlinear effect is a result of a marked difference in chemical properties of the diastereomeric (homochiral and heterochiral) dinuclear complexes formed from the dialkylzinc and the DAIB auxiliary. This phenomenon may be the beginning of a new generation of enantioselective organic reactions.  相似文献   

6.
In order to develop a practical method for the construction of chiral molecules, we have designed a novel chiral reaction system possessing multi‐metal centers utilizing tartaric acid ester as a chiral auxiliary. Based on this concept, we have developed an asymmetric 1,3‐dipolar cycloaddition reaction of azomethine imines, an asymmetric hetero Diels‐Alder reaction of nitroso compounds, an asymmetric Diels‐Alder reaction of o‐quinodimethanes. Furthermore, an asymmetric nucleophilic addition of alkynylzinc reagents, prepared in situ from dialkylzinc and 1‐alkynes, to nitrones was achieved with high level of stereocontrol. In the last case, the addition of methylzinc salt of a product‐like racemic hydroxylamine was found to be effective for unprecedented enhancement of enantioselectivity. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 10: 173–187; 2010: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.201000002  相似文献   

7.
《中国化学》2018,36(3):217-222
The first catalytic enantioselective C(sp)―C(sp3) cross‐coupling reaction between N‐tosylhydrazones and trialkylsilylethynes in the presence of Cu(I) salts and chiral phosphoramidite ligands was developed. A series of synthetically interesting, functionalized alkynes were obtained with moderate to good enantioselectivities (up to 83% ee). Cu(II) carbene migratory insertion is proposed to be the enantio‐determining step.  相似文献   

8.
A nickel‐catalyzed asymmetric diarylation reaction of vinylarenes enables the preparation of chiral α,α,β‐triarylated ethane scaffolds, which exist in a number of biologically active molecules. The use of reducing conditions with aryl bromides as coupling partners obviates the need for stoichiometric organometallic reagents and tolerates a broad range of functional groups. The application of an N‐oxyl radical as a ligand to a nickel catalyst represents a novel approach to facilitate nickel‐catalyzed cross‐coupling reactions.  相似文献   

9.
The reaction scope of iron‐ and cobalt‐catalyzed cross‐coupling reactions in the presence of isoquinoline (quinoline) in the solvent mixture tBuOMe/THF has been further investigated. Various 2‐halogenated pyridine, pyrimidine, and triazine derivatives were arylated under these mild conditions in excellent yields. The presence of isoquinoline allows us to perform Fe‐catalyzed cross‐coupling reactions between 6‐chloroquinoline and aryl magnesium reagents. Furthermore, it was found that the use of 10 % N,N‐dimethylquinoline‐8‐amine increases the yields of some Co‐catalyzed cross‐coupling reactions with chloropyridines bearing electron‐withdrawing substituents.  相似文献   

10.
A combination of 10 % CoCl2 and 20 % 2,2′‐bipyridine ligands enables cross‐coupling of functionalized primary and secondary alkylzinc reagents with various (hetero)aryl halides. Couplings with 1,3‐ and 1,4‐substituted cycloalkylzinc reagents proceeded diastereoselectively leading to functionalized heterocycles with high diastereoselectivities of up to 98:2. Furthermore, alkynyl bromides react with primary and secondary alkylzinc reagents providing the alkylated alkynes.  相似文献   

11.
N?C axially chiral compounds have emerged recently as appealing motifs for drug design. However, the enantioselective synthesis of such molecules is still poorly developed and surprisingly no metal‐catalyzed atroposelective N‐arylations have been described. Herein, we disclose an unprecedented Cu‐catalyzed atroposelective N?C coupling that proceeds at room temperature. Such mild reaction conditions, which are a crucial parameter for atropostability of the newly generated products, are operative thanks to the use of hypervalent iodine reagents as a highly reactive coupling partners. A large panel of the N?C axially chiral compounds was afforded with very high enantioselectivity (up to >99 % ee) and good yields (up to 76 %). Post‐modifications of thus accessed atropisomeric compounds allows further expansion of the diversity of these appealing compounds.  相似文献   

12.
The alkylative carboxylation of allenamide catalyzed by an N‐heterocyclic carbene (NHC)–copper(I) complex [(IPr)CuCl] with CO2 and dialkylzinc reagents was investigated. The reaction of allenamides with dialkylzinc reagents (1.5 equiv) and CO2 (1 atm.) proceeded smoothly in the presence of a catalytic quantity of [(IPr)CuCl] to afford (Z)‐α,β‐dehydro‐β‐amino acid esters in good yields. The reaction is regioselective, with the alkyl group introduced onto the less hindered γ‐carbon, and the carboxyl group introduced onto the β‐carbon atom of the allenamides. The first step of the reaction was alkylative zincation of the allenamides to give an alkenylzinc intermediate followed by nucleophilic addition to CO2. A variety of cyclic and acyclic allenamides were found to be applicable to this transformation. Dialkylzinc reagents bearing β‐hydrogen atoms, such as Et2Zn or Bu2Zn, also gave the corresponding alkylative carboxylation products without β‐hydride elimination. The present methodology provides an easy route to alkyl‐substituted α,β‐dehydro‐β‐amino acid ester derivatives under mild reaction conditions with high regio‐ and stereoselectivtiy.  相似文献   

13.
A combination of an in situ generated chiral CuI/DTBM‐MeO‐BIPHEP catalyst system and EtOK enabled the enantioselective SN2′‐type allylic cross‐coupling between alkylborane reagents and γ,γ‐disubstituted primary allyl chlorides with enantiocontrol at a useful level. The reaction generates a stereogenic quaternary carbon center having three sp3‐alkyl groups and a vinyl group. This protocol allowed the use of terminal alkenes as nucleophile precursors, thus representing a formal reductive allylic cross‐coupling of terminal alkenes. A reaction pathway involving addition/elimination of a neutral alkylcopper(I) species with the allyl chloride substrate is proposed.  相似文献   

14.
Chiral compounds arising from the replacement of hydrogen atoms by deuterium are very important in organic chemistry and biochemistry. Some of these chiral compounds have a non‐measurable specific rotation, owing to very small differences between the isotopomeric groups, and exhibit cryptochirality. This particular class of compounds is difficult to synthesize and characterize. Herein, we present a catalytic and highly enantioselective conversion of terminal alkenes to various β and more remote chiral isotopomers of 1‐alkanols, with ≥99 % enantiomeric excess (ee), by the Zr‐catalyzed asymmetric carboalumination of alkenes (ZACA) and Cu‐catalyzed cross‐coupling reactions. ZACA‐in situ iodinolysis of allyl alcohol and ZACA‐in situ oxidation of TBS‐protected ω‐alkene‐1‐ols protocols were applied to the synthesis of both (R)‐ and (S)‐difunctional intermediates with 80–90 % ee. These intermediates were readily purified to provide enantiomerically pure (≥99 % ee) compounds by lipase‐catalyzed acetylation. These functionally rich intermediates serve as very useful synthons for the construction of various chiral isotopomers of 1‐alkanols in excellent enantiomeric purity (≥99 % ee) by introducing deuterium‐labeled groups by Cu‐catalyzed cross‐coupling reactions without epimerization.  相似文献   

15.
1,3‐Disubstituted bicyclo[1.1.1]pentanes (BCPs) are important motifs in drug design as surrogates for p‐substituted arenes and alkynes. Access to all‐carbon disubstituted BCPs via cross‐coupling has to date been limited to use of the BCP as the organometallic component, which restricts scope due to the harsh conditions typically required for the synthesis of metallated BCPs. Here we report a general method to access 1,3‐C‐disubstituted BCPs from 1‐iodo‐bicyclo[1.1.1]pentanes (iodo‐BCPs) by direct iron‐catalyzed cross‐coupling with aryl and heteroaryl Grignard reagents. This chemistry represents the first general use of iodo‐BCPs as electrophiles in cross‐coupling, and the first Kumada coupling of tertiary iodides. Benefiting from short reaction times, mild conditions, and broad scope of the coupling partners, it enables the synthesis of a wide range of 1,3‐C‐disubstituted BCPs including various drug analogues.  相似文献   

16.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Synergistic catalysis has emerged as one of the most powerful tools for stereodivergent formation of Csp3−Csp3 bonds bearing vicinal stereocenters. Despite the many successes that have been achieved in this field, stereodivergent Csp3−Csp3 coupling reactions involving stabilized nucleophiles remain challenging because of the competing single-catalysis pathway. Herein, we report a synergistic palladium/phase-transfer catalyst system that enables diastereodivergent Csp3−Csp3 coupling reactions of 1,3-dienes with stabilized nucleophile oxindoles. Both the syn and anti coupling products, bearing quaternary and tertiary vicinal stereocenters, could be selectively produced in good yields with high enantio- and diastereoselectivities. Non-covalent activation of the stabilized nucleophile via chiral ion pair in a biphasic system is a crucial success factor in achieving diastereodivergence.  相似文献   

18.
A Pd‐catalyzed efficient reductive cross‐coupling reaction without metallic reductant to construct a Csp2?Csp3 bond has been reported. A PdIV complex was proposed to be a key intermediate, which subsequently went through double oxidative addition and double reductive elimination to produce the cross‐coupling products by involving Pd0/II/IV in one transformation. The oxidative addition from PdII to PdIV was partially demonstrated to be a radical process by self‐oxidation of substrate without additional oxidants. Furthermore, the solvent was proved to be the reductant for this transformation through XPS analysis.  相似文献   

19.
Chiral secondary alkylcopper reagents were prepared from chiral secondary alkyl iodides by a retentive I/Li exchange followed by a retentive transmetalation with CuBr?P(OEt)3. Switching the solvent to THF significantly increased their configurational stability and made these copper reagents suitable for regioselective allylic substitutions. The optically enriched copper species underwent SN2 substitutions with allylic bromides (up to >99 % SN2 regioselectivity). The addition of ZnCl2 and the use of chiral allylic phosphates allowed to switch the regioselectivity towards SN2′ substitution (up to >99 % SN2′ regioselectivity) and to perform highly selective anti‐SN2′ substitutions with absolute control over two adjacent stereocenters. This method was applied in the total synthesis of the three ant pheromones (+)‐lasiol, (+)‐13‐norfaranal, and (+)‐faranal (up to 98:2 dr, 99 % ee).  相似文献   

20.
A semi‐synthetic method has been developed for the synthesis of aminoarylbenzosuberenes (AABs) from naturally occurring himachalenes, an isomeric mixture of sesquiterpenes present in Cedrus deodara oil. Polymer‐stabilized Pd(0) nanoparticle‐catalysed Suzuki–Miyaura cross‐coupling reaction of aminovinyl bromide‐substituted benzosuberenes has been adopted for AAB synthesis. The catalyst performed well with different amine substituents, and was recycled up to five times. The synthesis of such arylated benzosuberene class of compounds from natural precursors following semi‐synthetic approaches could provide an attractive alternative method with reduced number of steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号