首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We designed and demonstrated the unique abilities of the first gas chromatography–molecular rotational resonance spectrometer (GC-MRR). While broadly and routinely applicable, its capabilities can exceed those of high-resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas-phase separations. GC-MRR is shown to be ideal for compound-specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC-MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.  相似文献   

2.
This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC‐(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole‐TOF‐MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MSE approach). In the low‐energy function, limited fragmentation took place, whereas for the high‐energy function, fragmentation was enhanced. For less volatile unknowns, ultra‐high pressure liquid chromatography‐quadrupole‐TOF‐MS was additionally applied. Using a home‐made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
《Analytical letters》2012,45(9):1647-1671
Abstract

Poly(chlorinated) dibenzo‐p‐dioxins and dibenzofurans (PCDDs/PCDFs) are persistent organic pollutants which are globally distributed in practically all environmental compartments and which exert a broad spectrum of toxic and biochemical effects. Humans are exposed to these compounds mainly through the diet with food of animal origin usually being the predominant source.

Multiple step isolation and clean up procedures are necessary to determine trace levels of these analytes in complex environmental and biological samples. This article reviews some of the recent developments in the extraction procedures, such as SFE, PLE, HS‐SPME, MAE, SCWE, ASE; clean‐up areas and instrumental analysis of dioxins in biological/environmental samples. Due to its specificity and sensitivity gas chromatography coupled with high resolution mass spectrometry (GC–HRMS), high‐resolution gas chromatography high‐resolution mass spectrometry (HRGC‐HRMS), or GC‐MS/GC techniques have been extensively applied to environmental, medicinal, and biological studies.  相似文献   

4.
《Analytical letters》2012,45(6):1003-1012
Abstract

This mini‐review discusses the analytical technique of gas chromatography‐mass spectrometry (GC‐MS), specifically basic principles and instrumentations. The applications of GC‐MS to a number of studies for determining organic compounds from around the world are presented and highlight its universal use and acceptance. Selected applications show that GC‐MS is an integral and complimentary part of many field studies involving organic compound detection and determination.  相似文献   

5.
Landfill gas, cryotrapped on a loop fashioned from a length of a capillary gas chromatography (GC) column, was examined for volatile organometallic compounds (VOMCs) and for volatile organic compounds (VOCs) by using GC–mass spectrometry (MS). A large number of organic components were present and many were identified, but the only VOMCs present in high enough concentrations to be detected were trimethylstibine and tetramethyltin. The use of inductively coupled plasma (ICP)‐MS as an element‐specific detector allowed the identification of a number of other organometallic species in the landfill gas, including trimethylarsine and trimethylbismuth, and, for the first time, butyltrimethyltin and dibutyldimethyltin. The presence of molybdenum hexacarbonyl was confirmed. Gas from a large‐scale compost heap and from compost incubated in the laboratory contained iodomethane but no common VOMCs (GC–ICP‐MS). Only VOCs were present in forest air (GC–MS). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Soft‐ionization methods are currently at the forefront of developing novel methods for analysing degraded archaeological organic residues. Here, we present little‐used soft ionization method of matrix assisted laser desorption/ionization‐Fourier transform‐ion cyclotron resonance‐mass spectrometry (MALDI‐FT‐ICR‐MS) for the identification of archaeological lipid residues. It is a high‐resolution and sensitive method with low limits of detection capable of identifying lipid compounds in small concentrations, thus providing a highly potential new technique for the analysis of degraded lipid components. A thorough methodology development for analysing cooked and degraded food remains from ceramic vessels was carried out, and the most efficient sample preparation protocol is described. The identified components, also controlled by independent parallel analysis by gas chromatography‐mass spectrometry (GC‐MS) and gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS), demonstrate its capability of identifying very different food residues including dairy, adipose fats as well as lipids of aquatic origin. The results obtained from experimentally cooked and original archaeological samples prove the suitability of MALDI‐FT‐ICR‐MS for analysing archaeological organic residues. Sample preparation protocol and identification of compounds provide future reference for analysing various aged and degraded lipid residues in different organic and mineral matrices.  相似文献   

7.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

8.
Amino sugars in soils have been used as markers of microbial necromass and to determine the relative contribution of bacterial and fungal residues to soil organic matter. However, little is known about the dynamics of amino sugars in soil. This is partly because of a lack of adequate techniques to determine ‘turnover rates’ of amino sugars in soil. We conducted an incubation experiment where 13C‐labeled organic substrates of different quality were added to a sandy soil. The objectives were to evaluate the applicability of compound‐specific stable isotope analysis via gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS) for the determination of 13C amino sugars and to demonstrate amino sugar dynamics in soil. We found total analytical errors between 0.8 and 2.6‰ for the δ13C‐values of the soil amino sugars as a result of the required δ13C‐corrections for isotopic alterations due to derivatization, isotopic fractionation and analytical conditions. Furthermore, the δ13C‐values of internal standards in samples determined via GC‐C‐IRMS deviated considerably from the δ13C‐values of the pure compounds determined via elemental analyzer IRMS (with a variation of 9 to 10‰ between the first and third quartile among all samples). This questions the applicability of GC‐C‐IRMS for soil amino sugar analysis. Liquid chromatography‐combustion‐IRMS (LC‐C‐IRMS) might be a promising alternative since derivatization, one of the main sources of error when using GC‐C‐IRMS, is eliminated from the procedure. The high 13C‐enrichment of the substrate allowed for the detection of very high 13C‐labels in soil amino sugars after 1 week of incubation, while no significant differences in amino sugar concentrations over time and across treatments were observed. This suggests steady‐state conditions upon substrate addition, i.e. amino sugar formation equalled amino sugar decomposition. Furthermore, higher quality substrates seemed to favor the production of fungal‐derived amino sugars. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A novel approach for the measurement of (37)Cl, (81)Br and (34)S in organic compounds containing chlorine, bromine, and sulphur is presented to overcome some of the major drawbacks of existing methods. Contemporary methods either require reference materials with the exact molecular compositions of the substances to be tested, or necessitate several laborious offline procedures prior to isotope analysis. In our online setup, organic compounds are separated by gas chromatography (GC) coupled to a high-temperature reactor. Using hydrogen as a makeup gas, the reactor achieves quantitative conversion of chlorinated, brominated and sulphurated organic compounds into gaseous hydrogen chloride (HCl), hydrogen bromide (HBr), and hydrogen sulphide (H(2)S), respectively. In this study, the GC interface was coupled to a quadrupole mass spectrometer operated in single-ion mode. The ion traces of either H(35)Cl (m/z 36) and H(37)Cl (m/z 38), H(79)Br (m/z 80) and H(81)Br (m/z 82), or H(2)(32)S (m/z 34) and H(2)(34)S (m/z 36), were recorded to determine the isotopic ratios of chlorine, bromine, and sulphur isotopes. The conversion interface presented here provides a basis for a novel method for compound-specific isotope analysis of halogenated and sulphur-containing compounds. Rapid online measurements of organic chlorine-, bromine- and sulphur-containing mixtures will facilitate the isotopic analysis of compounds containing these elements, and broaden their usage in fields of environmental forensics employing isotopic concepts.  相似文献   

10.
GC and HPLC with selective detectors were compared for simultaneous determination of triazine herbicides simazine, atrazine, propazine, terbuthylazine, cyanazine, ametryn, prometryn, and atraton, and of their dealkylated degradation products in soil. The compounds were ultrasonically extracted from spiked agricultural soil samples (organic matter content < 5%) with a 2:1 acetone:n‐hexane mixture. High efficiency of GC capillary column and high selectivity of the thermionic sensitive detector (TSD) and ion trap detector (ITD) made it possible to directly analyse uncleaned soil extracts and determine all 12 compounds in one run. In reversed‐phase HPLC with diode‐array detector (DAD), the co‐elution of soil matrix components interfered with the determination of methylthiotriazines and terbuthylazine. The recovery of triazine compounds, determined by GC‐TSD, from a silty sand soil (organic matter content 1.82%, pH 6.22) spiked at levels of 15–600 ng g–1, were 70–90% (RSD 9–19%), except for deisopropylatraton (38%). GC‐TSD analysis with detection limits of 5–15 ng g–1 for chloro‐ and methylthiotriazines and 30 ng g–1 for methoxytriazines was more sensitive than GC‐MS(ITD). GC analysis with electron capture detection was sensitive for some chlorotriazines, but a reliable compound quantification in complex chromatograms of uncleaned soil of extracts was not possible. For all compounds save didealkylatrazine, HPLC‐DAD was at least two times less sensitive than GC‐TSD. Soil/sediment organic matter, clay and silt content, and pH were identified as matrix characteristics which might affect ultrasonic extraction recovery of a particular compound.  相似文献   

11.
Building‐related health effects are frequently observed. Several factors have been listed as possible causes including temperature, humidity, light conditions, presence of particulate matter, and microorganisms or volatile organic compounds. To be able to link exposure to specific volatile organic compounds to building‐related health effects, powerful and comprehensive analytical methods are required. For this purpose, we developed an active air sampling method that utilizes dual‐bed tubes loaded with TENAX‐TA and Carboxen‐1000 adsorbents to sample two parallel air samples of 4 L each. For the comprehensive volatile organic compounds analysis, an automated thermal desorption comprehensive two‐dimensional gas chromatography high‐resolution time‐of‐flight mass spectrometry method was developed and used. It allowed targeted analysis of approximately 90 known volatile organic compounds with relative standard deviations below 25% for the vast majority of target volatile organic compounds. It also allowed semiquantification (no matching standards) of numerous nontarget air contaminants using the same data set. The nontarget analysis workflow included peak finding, background elimination, feature alignment, detection frequency filtering, and tentative identification. Application of the workflow to air samples from 68 indoor environments at a large hospital complex resulted in a comprehensive volatile organic compound characterization, including 178 single compounds and 13 hydrocarbon groups.  相似文献   

12.
Nitrogen-containing compounds in diesel fuel have been speciated by comprehensive two-dimensional gas chromatography with nitrogen chemiluminescence detector (GC x GC-NCD). The speciation of nitrogen-containing compounds in diesel is difficult because of low concentration and complexity. The advantages of GC x GC are improved resolution and enhanced sensitivity. GC x GC-NCD can achieve the type and class separation of nitrogen-containing compounds with an appropriate separation column combination. Diesel contains both neutral (indoles and carbazoles) and basic (pyridines and quinolines) nitrogen-containing compounds. Relative concentrations of each class as well as each carbon number family can be quantified by integrating their peak volumes. This study demonstrates the capability of GC x GC-NCD for speciation of nitrogen-containing compound classes.  相似文献   

13.
An inter‐laboratory exercise was carried out by a consortium of five European laboratories to establish a set of compounds, suitable for calibrating gas chromatography/combustion/isotope ratio mass spectrometry (GC‐C‐IRMS) devices, to be used as isotopic reference materials for hydrogen, carbon, nitrogen and oxygen stable isotope measurements. The set of compounds was chosen with the aim of developing a mixture of reference materials to be used in analytical protocols to check for food and beverage authentication. The exercise was organized in several steps to achieve the certification level: the first step consisted of the a priori selection of chemical compounds on the basis of the scientific literature and successive GC tests to set the analytical conditions for each single compound and the mixture. After elimination of the compounds that turned out to be unsuitable in a multi‐compound mixture, some additional oxygen‐ and nitrogen‐containing substances were added to complete the range of calibration isotopes. The results of δ13C determinations for the entire set of reference compounds have previously been published, while the δD and δ18O determinations were unsuccessful and after statistical analysis of the data the results did not reach the level required for certification. In the present paper we present the results of an inter‐laboratory exercise to identify and test the set of nitrogen‐containing compounds present in the mixture developed for use as reference materials for the validation of GC‐C‐IRMS analyses in individual laboratories. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management. High flow rates into the PTV inlet of 750mLmin(-1)during thermal desorption are ca. a factor of ten greater than typically used. To improve resolution and retention time stability, the thermal desorption and PTV inlet programming procedure includes three steps to prevent water from entering the analytic column while effectively transferring the analytes into the GC system. The instrumentation and procedures provide virtually complete and consistent transfer of analytes collected from ambient air into the GC evidenced by recovery of seven replicates of four internal standards of 90.7+/-4.0-120+/-23% (mean+/-95% confidence interval, CI). Retention time based compound identification is facilitated by low retention time variability with an average 95% CI of 0.024min for sixteen replicates of eight standards. Procedure details and performance metrics as well as ambient sampling results are presented.  相似文献   

15.
The potential of gas chromatography coupled to tandem mass spectrometry (GC/MS/MS) with a triple quadrupole analyzer (QqQ) has been investigated for the quantification and reliable identification of sixteen polycyclic aromatic hydrocarbons (PAHs) from the EPA priority list in animal and vegetable samples from aquaculture activities, whose fat content ranged from 5 to 100%. Matrices analyzed included fish fillet, fish feed, fish oil and linseed oil. Combining optimized saponification and solid‐phase extraction led to high efficiency in the elimination of interfering compounds, mainly fat, from the extracts. The developed procedure minimized the presence of these interfering compounds in the extracts and provided satisfactory recoveries of PAHs. The excellent sensitivity and selectivity of GC/(QqQ)MS/MS in selected reaction monitoring (SRM) allowed to reach limits of detection at pg/g levels. Two SRM transitions were acquired for each analyte to ensure reliable identification of compounds detected in samples. Confirmation of positive findings was performed by GC coupled to high‐resolution time‐of‐flight mass spectrometry (GC/TOFMS). The accurate mass information provided by GC/TOFMS in full acquisition mode together with its high mass resolution makes it a powerful analytical tool for the unequivocal confirmation of PAHs in the matrices tested. The method developed was applied to the analysis of real‐world samples of each matrix studied with the result of detecting and confirming the majority of analytes at the µg/kg level by both QqQ and TOF mass spectrometers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
High‐temperature liquid standard loading strategy onto solid sorbent traps for calibration of thermal desorption–GC–MS techniques for the analysis of volatile organic compounds is evaluated and optimised. With this proposed set‐up, volatilised liquid‐loaded standards interact in gas phase with solid sorbent particles. Response factor for 15 volatile compounds with different vapour pressures have been evaluated and compared with common strategies based on liquid matrix interactions. Using gas matrix strategy improves signal output in the range 10–700%. Average increase for benzene, toluene, ethylbenzene and xylenes is 480%. Reported systematic bias between liquid standards and gas samples are reduced, enhancing thermal desorption methodologies on one of its more important issues. In addition, the proposed system improves the average repeatability to a 3.2%, over 13 times some reported data. The use of an ultra‐thin GC capillary column of 150 μm id performs better peak resolution in about 60% the time with usual 250 μm id capillary columns. The usefulness of this proposed optimised procedure has been proved in real air matrix samples, through a large study with the reliable characterisation of 93 different volatile compounds in the ambient air of a municipal solid waste treatment area  相似文献   

18.
Comprehensive gas chromatography (GC) has emerged in recent years as the technique of choice for the analysis of volatile and semivolatile compounds in complex matrices. Coupling it with high‐resolution mass spectrometry (MS) makes a powerful tool for identification and quantification of organic compounds. The results obtained in this study showed a significant improvement by using GC×GC‐EI‐MS in comparison with GC‐EI‐MS; the separation of chromatogram peaks was highly improved, which facilitated detection and identification. However, the limitation of Orbitrap mass analyzer compared with time‐of‐flight analyzer is the data acquisition rate; the frequency average was about 25 Hz at a mass resolving power of 15.000, which is barely sufficient for the proper reconstruction of the narrowest chromatographic peaks. On the other hand, the different spectra obtained in this study showed an average mass accuracy of about 1 ppm. Within this average mass accuracy, some reasonable elemental compositions can be proposed and combined with characteristic fragment ions, and the molecules can be identified with precision. At a mass resolving power of 7.500, the scan rate reaches 43 Hz and the GC×GC‐MS peaks can be represented by more than 10 data points, which should be sufficient for quantification. The GC×GC‐MS was also applied to analyze a cellulose bio‐oil sample. Following this, a highly resolved chromatogram was obtained, allowing EI mass spectra containing molecular and fragment ions of many distinct molecules present in the sample to be identified.  相似文献   

19.
Gas chromatography coupled to high‐resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high‐resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi‐volatile organic compounds. Gas chromatography with high‐resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high‐resolution time‐of‐flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi‐target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high‐resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high‐resolution mass spectrometry for non‐target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high‐resolution mass spectrometry over the currently used methods is expected, will be discussed as well.  相似文献   

20.
Galanthamine‐type alkaloids produced by plants of the Amaryllidaceae family are potent acetylcholinesterase inhibitors. One of them, galanthamine, has been marketed as a hydrobromide salt for the treatment of Alzheimer's disease. In the present work, gas chromatography with electron impact mass spectrometry (GC‐EIMS) fragmentation of 12 reference compounds isolated from various amaryllidaceous plants and identified by spectroscopic methods (1D and 2D nuclear magnetic resonance, circular dichroism, high‐resolution MS (HRMS) and EIMS) was studied by tandem mass spectrometry (GC‐MS/MS) and accurate mass measurements (GC‐HRMS). The studied compounds showed good peak shape and efficient GC separation with a GC‐MS fragmentation pattern similar to that obtained by direct insertion probe. With the exception of galanthamine‐N‐oxide and N‐formylnorgalanthamine, the galanthamine‐type compounds showed abundant [M]+. and [M‐H]+ ions. A typical fragmentation pattern was also observed, depending on the substituents of the skeleton. Based on the fragmentation pathways of reference compounds, three other galanthamine‐type alkaloids, including 3‐O‐(2′‐butenoyl)sanguinine, which possesses a previously unelucidated structure, were identified in Leucojum aestivum ssp. pulchelum, a species endemic to the Balearic islands. GC‐MS can be successfully applied to Amaryllidaceae plant samples in the routine screening for potentially new or known bioactive molecules, chemotaxonomy, biodiversity and identification of impurities in pharmaceutical substances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号