首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The outer‐coordination sphere of enzymes acts to fine‐tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer‐coordination sphere on [Ni(PPh2NPh‐R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non‐natural amino acids or dipeptides was prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non‐natural amino acid was either 3‐(meta‐ or para‐aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non‐natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s?1, 40 % faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C‐terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N‐phenyl meta position. This is consistent with slower electron transfer in the less compact, para‐substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer‐coordination sphere in molecular hydrogen production catalysts.  相似文献   

2.
The radical S‐adenosylmethionine (SAM) aminomutases represent an important pathway for the biosynthesis of β‐amino acids. In this study, we report biochemical characterization of BlsG involved in blasticidin S biosynthesis as a radical SAM arginine 2,3‐aminomutase. We showed that BlsG acts on both L‐arginine and L‐lysine with comparable catalytic efficiencies. Similar dual substrate specificity was also observed for the lysine 2,3‐aminomutase from Escherichia coli (LAMEC). The catalytic efficiency of LAMEC is similar to that of BlsG, but is significantly lower than that of the enzyme from Clostridium subterminale (LAMCS), which acts only on L‐lysine rather than on L‐arginine. Moreover, we showed that enzymes can be grouped into two major phylogenetic clades, each corresponding to a certain C3 stereochemistry of the β‐amino acid product. Our study expands the radical SAM aminomutase members and provides insights into enzyme evolution, supporting a trade‐off between substrate promiscuity and catalytic efficiency.  相似文献   

3.
《中国化学》2018,36(9):791-797
Transforming amino acids into novel catalysts and ligands is a remarkable subset of new catalyst development in order to imitate enzymatic efficiencies. Their ability to perform a variety of asymmetric catalytic reactions is complimented by their ready availability, rich transformations, stability and easy procedure. Herein, we focused on describing our endeavor of developing new catalysts and ligands from primary and secondary amino acids. It includes C2‐symmetric N,N'‐dioxides, guanidine‐amides, bispidine‐based diamines, and other organic salts. The account covered a brief introduction about their discovery, representative applications and related mechanisms.  相似文献   

4.
The effect of β3‐amino acids on the conformation and catalytic performance of the peptidic catalyst H‐d Pro‐Pro‐Glu‐NH2 was investigated. Analogues of the peptidic catalyst bearing instead of the α‐amino acids the respective β3‐amino acids were prepared and their reactivity and stereoselectivity was investigated in conjugate addition reactions of aldehydes to nitroolefins. Additional computational studies provided insights into the preferred conformations of the peptidic catalysts. The results show that conformational flexibility at the N‐terminus has a severe effect on the stereoselectivity but is tolerated at the C‐terminus.  相似文献   

5.
The block and random copolymerization of a series of amino acid and amino ester functionalized norbornenes by ring‐opening metathesis polymerization (ROMP) induced by the well‐defined molybdenum [Mo(?N‐2,6‐iPr? C6H3)(?CHCMe2)Ph)(OCMe3)2] or ruthenium [Ru(PCy)2Cl2(?CHPh)] based initiators is described. The monomers are derived from the amino acids glycine, alanine, and isoleucine or the methyl esters of these amino acids and either endo‐ or exo‐norborn‐5‐ene‐2,3‐dicarboxylic anhydride. Enantiomerically pure monomers afforded optically active polymers, and the mechanism and kinetics of the copolymerizations are investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7985–7995, 2008  相似文献   

6.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

7.
The enthalpies of mixing of six kinds of amino acid (glycine, L-alanine, L-valine, L-serine, L-threonine, and L-proline) with glycerol in aqueous solutions and the enthalpies of diluting of amino acid and glycerol aqueous solutions have been determined by flow microcalorimetry at 298.15 K. Employing McMillan–Mayer theory, the enthalpies of mixing and diluting have been used to calculate heterogeneous enthalpic pairwise interaction coefficients (h xy ) between amino acids and glycerol in aqueous solutions. Combining h xy values of amino acids with glycol in the previous study, the variations of the h xy values between amino acids and glycerol have been interpreted from the point of view of solute–solute interactions.  相似文献   

8.
New reactions that convert alcohols into important classes of compounds are becoming increasingly important as their development contributes to the conservation of our fossil carbon feedstock and the reduction of CO2 emissions. Two key catalytic alcohol conversion concepts are borrowing hydrogen or hydrogen autotransfer and acceptorless dehydrogenative condensation. Herein, we combined both concepts to synthesize meta ‐functionalized pyridines. First, diols and amines were linked to β‐amino alcohols, which can then undergo a selective dehydrogenative heterocondensation with γ‐amino alcohols. Iridium catalysts stabilized by PN5P pincer ligands that were developed in our laboratory mediate the reactions most efficiently. All of the 3‐aminopyridines that we describe in this paper have been synthesized for the first time, emphasizing the degree of innovation of this method and the problems associated with the synthesis of such meta ‐functionalized pyridines.  相似文献   

9.
The synthesis of bolaamphiphiles from unusual β‐amino acids or an alcohol and C12 or C20 spacers is described. Unusual β‐amino acids such as a sugar amino acid, an AZT‐derived amino acid, a norbornene amino acid, and an AZT‐derived amino alcohol were coupled with spacers under standard conditions to get the novel bolaamphiphiles 5 – 8 (Scheme 1), 12 and 13 (Scheme 2), and 17 and 20 (Scheme 3). Some of these compounds, on precipitation from MeOH/H2O, self‐assembled into organized molecular structures.  相似文献   

10.
Terminally blocked, homo‐peptide amides of (R,R)‐1‐amino‐2,3‐diphenylcyclopropane‐1‐carboxylic acid (c3diPhe), a chiral member of the family of Cα‐tetrasubstituted α‐amino acids, from the dimer to the tetramer, and diastereomeric co‐oligopeptides of (R,R)‐ or (S,S)‐c3diPhe with (S)‐alanine residues to the trimer level were prepared in solution and fully characterized. The synthetic effort was extended to terminally protected co‐oligopeptide esters to the hexamer, where c3diPhe residues are combined with achiral α‐aminoisobutyric acid residues. The preferred conformations of the peptides were assessed in solution by FT‐IR absorption, NMR, and CD techniques, and for seven oligomers in the crystal state (by X‐ray diffraction) as well. This study clearly indicates that c3diPhe, a sterically demanding cyclopropane analogue of phenylalanine, tends to fold peptides into β‐turn and 310‐helix conformations. However, when c3diPhe is in combination with other chiral residues, the conformation preferred by the resulting peptides is also dictated by the chiral sequence of the amino acid building blocks. The (S,S)‐enantiomer of this α‐amino acid, unusually lacking asymmetry in the main chain, strongly favors the left‐handedness of the turn/helical peptides formed.  相似文献   

11.
天然氨基甘油糖脂sn-1,2-dipalmitoyl-3-(N-palmitoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 3 和 sn-1-palmitoyl-2-myristoyl-3-(N-stearoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 4 通过简便有效的合成策略首次被合成。其关键步骤为:三氯亚胺酯糖基供体 10 与 (S)-isopropyleneglycerol 在乙醚溶液中发生糖苷化反应,立体选择性的生成3-O-(2,3,4-tri-O-benzyl-6-dehydroxy-6-benzyloxycarbonylamino-α-D- glucopyranoyl)-1,2-O-isopropylene-sn- glycerol 7。中间体 7 经过脱除丙酮叉、与不同的脂肪酸缩合、脱除保护基和选择性的在氨基上酰化,最终得到目标化合物 3 和 4。  相似文献   

12.
The catalytic properties of all proteinogenic, acyclic amino acids for direct aldol reaction in H2O, assisted by various surfactants, were investigated. The basic and neutral amino acids were shown to be efficient catalysts, giving rise to good‐to‐excellent yields of adducts (up to 95%), with moderate‐to‐good diastereoselectivities (up to 86%), L ‐arginine being the most‐effective catalyst. The syn/anti diastereoisomer ratio could be readily tuned by proper choice of the amino acid used. Also, the range of substrates that underwent the reaction was extended to less‐reactive aldehydes carrying electron‐donating Br substituents.  相似文献   

13.
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented.  相似文献   

14.
An MEKC method with LIF detection has been developed for the determination of seven neurotransmitter amino acids (NAAs) using 1,3,5,7‐tetramethyl‐8‐(N‐hydroxysuccinimidyl butyric ester)difluoroboradiaza‐S‐indacene as the labeling reagent. After derivatization at room temperature for 30 min, the seven target NAAs including glycine, alanine, γ‐aminobutyric acid, taurine, glutamine, glutamic acid, and aspartic acid were separated in running buffer, which consisted of 70 mM pH 4.00 H3PO4/Na3PO4 buffer, 5.5 mM cetyltrimethyl ammonium bromide and 20% v/v acetonitrile within 17 min. The LODs were 2 ~ 14 × 10?10 M without interference from other coexisting amino acids. The proposed method has been applied to the analysis of NAAs in the central nervous systems of healthy mice and those with Alzheimer's disease with recoveries of 92–104%.  相似文献   

15.
In this study, a series of secondary‐ and tertiary‐amino‐substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert‐amino groups in benzylamine‐based diselenides by sec‐amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N‐propyl‐ and N‐isopropylamino‐substituted diselenides are 8–18 times more active than the corresponding N,N‐dipropyl‐ and N,N‐diisopropylamine‐based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec‐amino‐substituted diselenides is similar to that of the tert‐amine‐based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx‐like activities. It is observed that the sec‐amino groups are better than the tert‐amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol‐exchange reactions in the selenenyl sulfides derived from sec‐amine‐based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec‐amine‐based compounds are more stable toward further reactions with peroxides than their tert‐amine‐based analogues.  相似文献   

16.
The kinetics of the Os(VIII)-catalyzed oxidation of glycine, alanine, valine, phenylalanine, isoleucine, lycine, and glutamic acid by alkaline hexacyanoferrate(III) reveal that these reactions are zero order in hexacyanoferrate(III) and first order in Os(VIII). The order in amino acid as well as in alkali is 1 at [amino acid] ?2.5 × 10?2M and [OH?] ?1.3 × 10?M, but less than unity at higher concentrations of amino acids or alkali. The active oxidizing species under the experimental conditions is OsO4(H2O) (OH)?. The ferricyanide is merely used up to regenerate the Os(VIII) species from Os(VI) formed during the reaction. The structural influence of amino acids on the reactivity has been discussed. The amino acids during oxidation are shown to be degraded through intermediate keto acids. The kinetic data are accommodated by considering the interaction between the conjugate base of the amino acids and the active oxidizing species of Os(VIII) to form a transient complex in the primary rate-determining step. The catalytic effect of hexacyanoferrate(II) has been rationalized.  相似文献   

17.
We report a useful synthetic method of polypeptides using a series of urethane derivative of α‐amino acids (l ‐leucine, l ‐phenylalanine, l ‐valine, l ‐alanine, l ‐isoleucine, l ‐methionine), which are readily synthesized by N‐carbamoylation of tetrabutylammonium salts of α‐amino acids with diphenyl carbonate. Heating these urethane derivatives in N,N‐dimethylacetamide in the presence of n‐butylamine successfully gave the corresponding polypeptides with well‐defined structures through polycondensation with the elimination of phenol and CO2. The matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry investigation showed that the resulting polypeptides had an n‐BuNH2‐incorporated initiating end and an amino group at propagating end. These results strongly indicated that primary amines served as an initiator in this polycondensation system. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3726–3731  相似文献   

18.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

19.
Methylation is one of the important posttranslational modifications of biological systems. At the metabolite level, the methylation process is expected to convert bioactive compounds such as amino acids, fatty acids, lipids, sugars, and other organic acids into their methylated forms. A few of the methylated amino acids are identified and have been proved as potential biomarkers for several metabolic disorders by using mass spectrometry–based metabolomics workstation. As it is possible to encounter all the N‐methyl forms of the proteinogenic amino acids in plant/biological systems, it is essential to have analytical data of all N‐methyl amino acids for their detection and identification. In earlier studies, we have reported the ESI‐MS/MS data of all methylated proteinogenic amino acids, except that of mono‐N‐methyl amino acids. In this study, the N‐methyl amino acids of all the amino acids ( 1 ‐ 21 ; including one isomeric pair) were synthesized and characterized by ESI‐MS/MS, LC/MS/MS, and HRMS. These data could be useful for detection and identification of N‐methyl amino acids in biological systems for future metabolomics studies. The MS/MS spectra of [M + H]+ ions of most N‐methyl amino acids showed respective immonium ions by the loss of (H2O, CO). The other most common product ions detected were [MH‐(NH2CH3]+, [MH‐(RH)]+ (where R = side chain group) ions, and the selective structure indicative product ions due to side chain and N‐methyl group. The isomeric/isobaric N‐methyl amino acids could easily be differentiated by their distinct MS/MS spectra. Further, the MS/MS of immonium ions inferred side chain structure and methyl group on α‐nitrogen of the N‐methyl amino acids.  相似文献   

20.
The impressive rate accelerations that enzymes display in nature often result from boosting the inherent catalytic activities of side chains by their precise positioning inside a protein binding pocket. Such fine‐tuning is also possible for catalytic unnatural amino acids. Specifically, the directed evolution of a recently described designer enzyme, which utilizes an aniline side chain to promote a model hydrazone formation reaction, is reported. Consecutive rounds of directed evolution identified several mutations in the promiscuous binding pocket, in which the unnatural amino acid is embedded in the starting catalyst. When combined, these mutations boost the turnover frequency (kcat) of the designer enzyme by almost 100‐fold. This results from strengthening the catalytic contribution of the unnatural amino acid, as the engineered designer enzymes outperform variants, in which the aniline side chain is replaced with a catalytically inactive tyrosine residue, by more than 200‐fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号