首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Let rk(C2m+1) be the k-color Ramsey number of an odd cycle C2m+1 of length 2m+1. It is shown that for each fixed m2, rk(C2m+1)<ckk!for all sufficiently large k, where c=c(m)>0 is a constant. This improves an old result by Bondy and Erd?s (1973).  相似文献   

2.
Let [Rn,k]n,k0 be an array of nonnegative numbers satisfying the recurrence relation Rn,k=(a1n+a2k+a3)Rn1,k+(b1n+b2k+b3)Rn1,k1+(c1n+c2k+c3)Rn1,k2 with R0,0=1 and Rn,k=0 unless 0kn. In this paper, we first prove that the array [Rn,k]n,k0 can be generated by some context-free Grammars, which gives a unified proof of many known results. Furthermore, we present criteria for real rootedness of row-generating functions and asymptotical normality of rows of [Rn,k]n,k0. Applying the criteria to some arrays related to tree-like tableaux, interior and left peaks, alternating runs, flag descent numbers of group of type B, and so on, we get many results in a unified manner. Additionally, we also obtain the continued fraction expansions for generating functions related to above examples. As results, we prove the strong q-log-convexity of some generating functions.  相似文献   

3.
4.
A graph is (k1,k2)-colorable if it admits a vertex partition into a graph with maximum degree at most k1 and a graph with maximum degree at most k2. We show that every (C3,C4,C6)-free planar graph is (0,6)-colorable. We also show that deciding whether a (C3,C4,C6)-free planar graph is (0,3)-colorable is NP-complete.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
For k given graphs G1,G2,,Gk, k2, the k-color Ramsey number, denoted by R(G1,G2,,Gk), is the smallest integer N such that if we arbitrarily color the edges of a complete graph of order N with k colors, then it always contains a monochromatic copy of Gi colored with i, for some 1ik. Let Cm be a cycle of length m and K1,n a star of order n+1. In this paper, firstly we give a general upper bound of R(C4,C4,,C4,K1,n). In particular, for the 3-color case, we have R(C4,C4,K1,n)n+4n+5+3 and this bound is tight in some sense. Furthermore, we prove that R(C4,C4,K1,n)n+4n+5+2 for all n=?2?? and ?2, and if ? is a prime power, then the equality holds.  相似文献   

13.
We give methods for constructing many self-dual Zm-codes and Type II Z2k-codes of length 2n starting from a given self-dual Zm-code and Type II Z2k-code of length 2n, respectively. As an application, we construct extremal Type II Z2k-codes of length 24 for k=4,5,,20 and extremal Type II Z2k-codes of length 32 for k=4,5,,10. We also construct new extremal Type II Z4-codes of lengths 56 and 64.  相似文献   

14.
15.
16.
17.
《Discrete Mathematics》2022,345(11):113021
In 2007, Andrews and Paule published the eleventh paper in their series on MacMahon's partition analysis, with a particular focus on broken k-diamond partitions. On the way to broken k-diamond partitions, Andrews and Paule introduced the idea of k-elongated partition diamonds. Recently, Andrews and Paule revisited the topic of k-elongated partition diamonds. Using partition analysis and the Omega operator, they proved that the generating function for the partition numbers dk(n) produced by summing the links of k-elongated plane partition diamonds of length n is given by (q2;q2)k(q;q)3k+1 for each k1. A significant portion of their recent paper involves proving several congruence properties satisfied by d1,d2 and d3, using modular forms as their primary proof tool. In this work, our goal is to extend some of the results proven by Andrews and Paule in their recent paper by proving infinitely many congruence properties satisfied by the functions dk for an infinite set of values of k. The proof techniques employed are all elementary, relying on generating function manipulations and classical q-series results.  相似文献   

18.
19.
20.
Let n and k be positive integers with n>k. Given a permutation (π1,,πn) of integers 1,,n, we consider k-consecutive sums of π, i.e., si?j=0k?1πi+j for i=1,,n, where we let πn+j=πj. What we want to do in this paper is to know the exact value of msum(n,k)?minmax{si:i=1,,n}?k(n+1)2:πSn, where Sn denotes the set of all permutations of 1,,n. In this paper, we determine the exact values of msum(n,k) for some particular cases of n and k. As a corollary of the results, we obtain msum(n,3), msum(n,4) and msum(n,6) for any n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号