首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple solvent ligation effect was successfully used to disrupt the growth of a model compound, Fe[(OH)(O3P(CH2)2CO2H)]⋅H2O (MIL-37), into an extended 2D structure by replacing water with dimethylformamide (DMF) as the solvent during the synthesis. Owing to the lack of −OH group, which provides the corner-sharing (binding) oxygen atoms for the octahedra, an amorphous and porous structure is formed. When Fe3+ is partially replaced by Ni2+, the amorphous structure remains and the resultant binary metal catalyst displays excellent photocatalytic oxygen evolution activity with almost 100 % yield achieved under visible light irradiation using [Ru(bpy)3]2+ as the photosensitizer. This study opens up new possibilities of using the simple solvent effect to synthesize high surface area metal phosphonates for catalytic and other applications.  相似文献   

2.
Bis(2‐methyl‐8‐quinolinolato)aluminum(III) hydroxide complex (AlMq2OH) is used in organic light‐emitting diodes (OLEDs) as an electron transport material and emitting layer. By means of ab initio Hartree–Fock (HF) and density functional theory (DFT) B3LYP methods, the structure of AlMq2OH was optimized. The frontier molecular orbital characteristics and energy levels of AlMq2OH have been analyzed systematically to study the electronic transition mechanism in AlMq2OH. For comparison and calibration, bis(8‐quinolinolato)aluminum(III) hydroxide complex (Alq2OH) has also been examined with these methods using the same basis sets. The lowest singlet excited state (S1) of AlMq2OH has been studied by the singles configuration interaction (CIS) method and time‐dependent DFT (TD‐DFT) using a hybrid functional, B3‐LYP, and the 6‐31G* basis set. The lowest singlet electronic transition (S0 → S1) of AlMq2OH is π → π* electronic transitions and primarily localized on the different quinolate ligands. The emission of AlMq2OH is due to the electron transitions from a phenoxide donor to a pyridyl acceptor from another quinolate ligand including C → C and O → N transference. Two possible electron transfer pathways are presented, one by carbon, oxygen, and nitrogen atoms and the other via metal cation Al3+. The comparison between the CIS‐optimized excited‐state structure with the HF ground‐state structure indicates that the geometric shift is mainly confined to the one quinolate and these changes can be easily understood in terms of the nodal patterns of the highest occupied and lowest unoccupied molecular orbitals. On the basis of the CIS‐optimized structure of the excited state, TD‐B3‐LYP calculations predict an emission wavelength of 499.78 nm. An absorption wavelength at 380.79 nm on the optimized structure of B3LYP/6‐31G* was predicted. They are comparable to AlMq2OH 485 and 390 nm observed experimentally for photoluminescence and UV‐vis absorption spectra of AlMq2OH solid thin film on quartz, respectively. Lending theoretical corroboration to recent experimental observations and supposition, the reasons for the blue‐shift of AlMq2OH were revealed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

3.
The oxidation state and local geometry of the metal centers in amorphous thin films of Fe2O3 (Fe3+ oxidation state), CoFe2O4 (Co2+/Fe3+ oxidation states), and Cr2O3 (Cr3+ oxidation state) are determined using K edge X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The metal oxide thin films were prepared by the solid-state photochemical decomposition of the relevant metal 2-ethylhexanoates, spin cast as thin films. No peaks are observed in the X-ray diffraction patterns, indicating the metal oxides are X-ray amorphous. The oxidation state of the metals is determined from the edge position of the K absorption edges, and in the case of iron-containing samples, an analysis of the pre-edge peaks. In all cases, the EXAFS analysis indicates the first coordination shell consists of oxygen atoms in an octahedral geometry, with a second shell consisting of metals. No higher shells are observed beyond 3.5 Å for all samples, indicating the metal oxides are truly amorphous, consistent with X-ray diffraction results.  相似文献   

4.
A Tri‐µ‐O‐S‐O coordinative manganese dimer: [Mn2(SO4)2(phen)4]·CH3OH (phen1,10‐phenanthroline) ( 1 ) was yielded by the reaction of 1,10‐phenanthroline and MnSO4·H2O in a mixed solvent of methanol and acetonitrile under room temperature and was structurally characterized. Single crystal analysis shows that complex 1 has polymeric structure based on binuclear Mn(II) units bridged by O‐S‐O groups of two SO42− anion. The UV spectrum of the complex clarifies that each metal‐organic building unit parallels with each other through the Π‐Π interactions of face‐to‐face separations of two 1,10‐phen planes among the complex, forming a layered structure. And the electronic paramagnetic resonance (EPR) signal clearly indicates that those manganese atoms in complex 1 are in +2 oxidation states.  相似文献   

5.
The effect of radioactive UO22+ on the oxygen‐transporting capability of hemoglobin‐based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer‐by‐layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe3O4) were loaded in porous CaCO3 particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO22+, it was found that UO22+ was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO22+ in vivo destroys the structure and oxygen‐transporting capability of Hb microspheres. In view of the high adsorption capacity of UO22+, the as‐assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation‐contaminated bodies, or from nuclear‐power reactor effluent before discharge into the environment.  相似文献   

6.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

7.
《Chemphyschem》2003,4(7):691-698
Several aspects of the molecular and electronic structure of biliverdin derivatives have been studied using density functional theory (DFT). The calculations have been performed for complexes of trianion (BvO2)3? and dianion [BvO(OH)]2?, derived from two tautomeric forms of biliverdin, BvO2H3 and [BvO(OH)]H2, with redox innocent metal ions: lithium(I ), zinc(II ), and gallium(III ). One‐electron‐oxidized and ‐reduced forms of each complex (cation and anion radicals) have been also considered. The molecular structures of all species investigated are characterized by a helical arrangement of tetrapyrrolic ligands with the metal ion lying in the plane formed by the two central pyrrole rings. The spin density distribution in four types of metallobiliverdin radicals—[(BvO2.)Mn+]n‐2, [{BvO(OH).}Mn+]n‐1 (cation radicals), [(BvO2.)Mn+]n‐4, [{BvO(OH).}Mn+]n‐3 (anion radicals)—has been investigated. In general, the absolute values of spin density on meso carbon atoms were larger than for the β‐carbon atoms. Sign alteration of spin density has been found for meso positions, and also for the β‐carbon atoms of at least two pyrrole rings. The calculated spin density maps accounted for the essential NMR spectroscopic features of iron biliverdin derivatives, including the considerable isotropic shifts detected for the meso resonances and shift alteration at the meso and β‐positions.  相似文献   

8.
Novel polymer complexes of 8‐hydroxyquinoline‐5‐sulfonic acid hydrate ( H 2 L ) with Cu2+, Co2+ and Ni2+ chloride were prepared and characterized. Microanalysis, magnetic susceptibility, IR spectra, electron spin resonance, mass spectra, X‐ray, molar conductance, thermal, and UV–Vis spectra studies have been used to confirm the structure of the prepared polymer complexes. The molecular and electronic structures of the hydrogen bond conformers for ligand ( H 2 L ) were optimized theoretically and the quantum chemical parameters were calculated. On the basis of elemental and IR data, the chemical structure of metal chelates commensurate that the tri‐dentate (H2L) coordinate to metal chlorides through oxygen atom of phenolic OH and oxygen atom of SO3‐H group by replacing H atoms and nitrogen of the quinoline ring. The magnetic studies suggested the octahedral geometrical structure for all produced polymer complexes with general formula {[ML (OH2)3] .xH2O}n (M = Cu2+, x = 1.; Co2+, x = 2 and Ni2+, x = 2) in molar ratio (1:1). Coats–Redfern and Horowitz–Metzger methods have been used for calculating the activation thermodynamic parameters of the thermal decomposition for H 2 L and its polymer complexes. The interaction between H 2 L and its transition metal complexes with the calf thymus DNA (CT‐DNA) was determined by UV–Vis spectra. Binding efficiency between H 2 L with the receptors of the prostate cancer (PDB code 2Q7L Hormone) and the breast cancer (PDB code 1JNX Gene regulation) was studied by molecular docking. The inhibition behaviour of H 2 L against the corrosion of carbon steel / HCl (2 M) solution was studied by weight loss, Tafel polarisation, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The adsorption isotherm was found to be Friendlish isotherm. The morphology of inhibited carbon steel? s surface was studied using scanning electron microscope (SEM) and energy dispersive X‐ray spectroscopy (EDS).  相似文献   

9.
Redox‐inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox‐inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII‐(O2)‐Zn(CF3SO3)2 ( 1 ‐Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one‐electron oxidation and reduction potentials of 1 ‐Zn2+. This further changes the reactivities of 1 ‐Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1 ‐Zn2+, whereas 1 ‐Zn2+ coordinating two water molecules, (TMC)FeIII‐(O2)‐Zn(CF3SO3)2‐(OH2)2 [ 1 ‐Zn2+‐(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1 ‐Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1 ‐Zn2+‐(OH2)2. The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.  相似文献   

10.
Three copper(II) complexes, [Cu2(OAc)4L2] · 2CH3OH ( 1 ), [CuBr2L′2(CH3OH)] · CH3OH ( 2a ), and [CuBr2L′2(DMSO)] · 0.5CH3OH ( 2b ) {L = N‐(9‐anthracenyl)‐N′‐(3‐pyridyl)urea and L′ = N‐[10‐(10‐methoxy‐anthronyl)]‐N′‐(3‐pyridyl)urea} have been synthesized by the reaction of L with the corresponding copper(II) salts. Complex 1 shows a dinuclear structure with a conventional “paddlewheel” motif, in which four acetate units bridge the two CuII ions. In complexes 2a and 2b , the anthracenyl ligand L has been converted to an anthronyl derivative L′, and the central metal ion exhibits a distorted square pyramidal arrangement, with two pyridyl nitrogen atoms and two bromide ions defining the basal plane and the apical position is occupied by a solvent molecule (CH3OH in 2a and DMSO in 2b ).  相似文献   

11.
Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non‐thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2, and NH3. The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2@TiO2?x), which exhibit the improved visible and near‐infrared light absorption. The types of dopants (oxygen vacancy/surface Ti3+/substituted N) in oxygen‐deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti3+ and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti3+ (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2@TiO2?x from NH3 plasma with a green color shows the highest photocatalytic activity under visible‐light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma.  相似文献   

12.
We report the rational design of metal–organic layers (MOLs) that are built from [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and Ir[bpy(ppy)2]+‐ or [Ru(bpy)3]2+‐derived tricarboxylate ligands (Hf‐BPY‐Ir or Hf‐BPY‐Ru; bpy=2,2′‐bipyridine, ppy=2‐phenylpyridine) and their applications in X‐ray‐induced photodynamic therapy (X‐PDT) of colon cancer. Heavy Hf atoms in the SBUs efficiently absorb X‐rays and transfer energy to Ir[bpy(ppy)2]+ or [Ru(bpy)3]2+ moieties to induce PDT by generating reactive oxygen species (ROS). The ability of X‐rays to penetrate deeply into tissue and efficient ROS diffusion through ultrathin 2D MOLs (ca. 1.2 nm) enable highly effective X‐PDT to afford superb anticancer efficacy.  相似文献   

13.
The design of structurally well‐defined anionic molecular metal–oxygen clusters, polyoxometalates (POMs), leads to inorganic receptors with unique and tunable properties. Herein, an α‐Dawson‐type silicotungstate, TBA8[α‐Si2W18O62] ? 3 H2O ( II ) that possesses a ?8 charge was successfully synthesized by dimerization of a trivacant lacunary α‐Keggin‐type silicotungstate TBA4H6[α‐SiW9O34] ? 2 H2O ( I ) in an organic solvent. POM II could be reversibly protonated (in the presence of acid) and deprotonated (in the presence of base) inside the aperture by means of intramolecular hydrogen bonds with retention of the POM structure. In contrast, the aperture of phosphorus‐centered POM TBA6[α‐P2W18O62]?H2O ( III ) was not protonated inside the aperture. The density functional theory (DFT) calculations revealed that the basicities and charges of internal μ3‐oxygen atoms were increased by changing the central heteroatoms from P5+ to Si4+, thereby supporting the protonation of II . Additionally, II showed much higher catalytic performance for the Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde than I and III .  相似文献   

14.
Six new triorganotin complexes ( 1a – 1c and 2a – 2c ) of 5‐(salicylideneamino)salicylic acid, [5‐(3‐X‐2‐HOC6H3CH═N)‐2‐HOC6H3COO]SnR3 (X = H, 1 ; CH3O, 2 ; R = Ph, a ; Cy, b ; CH2C(CH3)2Ph, c ), have been synthesized by one‐pot reaction of 5‐aminosalicylic acid, salicylaldehyde and triorganotin hydroxide and characterized using elemental analysis and infrared and NMR (1H, 13C and 119Sn) spectra. The crystal structures of 1a , 1b , 2a ·CH3OH, 2b ·CH3OH and 2c ·CHCl3 have been determined using single‐crystal X‐ray diffraction. In non‐coordinated solvent CDCl3, the tin atoms in the complexes are all four‐coordinated. In the crystalline state, these compounds adopt a four‐ or five‐coordination mode. Complex 1a exhibits a 44‐membered macrocyclic tetrameric structure with trigonal bipyramidal geometry around the tin atoms in which the axial positions are occupied by the oxygen atom of carboxylate group of the ligand and the phenolic oxygen atom from the adjacent ligand. The coordination geometry of tin atom in 1b and 2c ·CHCl3 is a distorted tetrahedron shaped by three carbon atoms of alkyl groups and a carboxylate oxygen atom of the ligand. In 2a ·CH3OH and 2b ·CH3OH, the tin atom has a distorted trans‐C3SnO2 trigonal bipyramidal geometry formed by three alkyl groups, a monodentate carboxylate group and a coordinated methanol molecule. The molecules of 2a ·CH3OH and 2b ·CH3OH are linked via O─H···O hydrogen bonds into a one‐dimensional supramolecular chain and a centrosymmetric R44(22) macrocycle, respectively. Bioassay results against two human tumor cell types (A549 and HeLa) show the complexes are efficient cytostatic agents and may be explored as potential antitumor drugs.  相似文献   

15.
Functionalization of the inert C? H bonds of unsaturated molecules by transition metal complex is an important means to form new C? C bonds. The functionalization is usually initiated by the ligand dissociation of a complex. In this paper we employ both ab initio and density functional methods to explore the influence of central metals, conformation, solvent and protonation on the ligand dissociation of the (hfac‐O,O)2M(L)(py) complexes [M=Rh(III) or Ir(III), hfac‐O,O=k2‐O,O‐1,1,1,5,5,5‐hexafluoroacetylacetonato, L=CH3, CH3CO2, (CH3CO)2CH, CH3O or OH, py=pyridine]. We demonstrate that ligand pyridine dissociates more easily than the "L" ligands under study in aprotic solvent and gas phase and the dissociation of pyridine is more facile in the trans‐conformation than in the cis‐isomer. These phenomena are rationalized based on electronic structure and molecular orbital interactions. We show that solvation only slightly stabilizes the complexes and does not change the ligand dissociation ordering. In particular, we show that pyridine is no longer the labile ligand in protic media. Instead, the oxygen‐containing ligands (apart from those like hfac that form a cyclic structure with the central metal) that coordinate to the central metal via oxygen atom become the labile ones. Finally our calculations indicate that hfac is a stable ligand, even in protic media.  相似文献   

16.
A nickel hydroxide (Ni(OH)2)/3D‐graphene composite is used as monolithic free‐standing electrode for enzymeless electrochemical detection of glucose. Ni(OH)2 nanoflakes are synthesized by using a simple solution growth procedure on 3D‐graphene foam which was grown by chemical vapor deposition (CVD). The pore structure of 3D‐graphene allows easy access to glucose with high surface area, which leads to glucose detection with an ultrahigh sensitivity of 3.49 mA mM?1 cm?2 and a significant lower detection limit up to 24 nM. Cyclic voltammetry (CV) and potentionstatic mode is used for non‐enzymatic glucose sensing. The impedance and effective surface area have been studied well. The high sensitivity, low detection limit and simple configuration of Ni(OH)2/three dimensional (3D)‐graphene composite electrodes can evoke its industrial application in glucose sensing devices.  相似文献   

17.
Chemodynamic therapy (CDT) utilizes iron‐initiated Fenton chemistry to destroy tumor cells by converting endogenous H2O2 into the highly toxic hydroxyl radical (.OH). There is a paucity of Fenton‐like metal‐based CDT agents. Intracellular glutathione (GSH) with .OH scavenging ability greatly reduces CDT efficacy. A self‐reinforcing CDT nanoagent based on MnO2 is reported that has both Fenton‐like Mn2+ delivery and GSH depletion properties. In the presence of HCO3?, which is abundant in the physiological medium, Mn2+ exerts Fenton‐like activity to generate .OH from H2O2. Upon uptake of MnO2‐coated mesoporous silica nanoparticles (MS@MnO2 NPs) by cancer cells, the MnO2 shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn2+, resulting in GSH depletion‐enhanced CDT. This, together with the GSH‐activated MRI contrast effect and dissociation of MnO2, allows MS@MnO2 NPs to achieve MRI‐monitored chemo–chemodynamic combination therapy.  相似文献   

18.
5‐Diphenylphosphino‐2‐hydroxy‐1,3‐xylyl‐18‐crown‐5 has been synthesized from 5‐bromo‐2‐hydroxy‐18‐crown‐5 by reacting it in sequence at low temperature with n‐butyl lithium and methyl diphenylphosphonite. The phosphorous donor properties of this phenol phosphine (OH derivative) and the corresponding phenoxide (O? derivative) have been studied in the presence and absence of alkali metal ions by determining the frequencies of the A1 ν(CO) bands of Ni(CO)3L complexes. For the OH and O? derivatives, the latter generated by addition of CsOH to the former, the ν(CO) bands are observed at 2067.6 and 2063.4 cm?1, respectively, providing the trend predicted by Hammett parameters for OH and O? substituents. Addition of Na+ or K+ to the OH derivative has little effect on this stretching frequency, but the former ion shifts the O? derivative band to 2067.7 cm?1 A solid state structure has been obtained of the OH derivative, and two independent molecules were found in the unit cell. Both have a single water molecule hydrogen bonded to two across‐ring oxygen atoms and the phenol hydrogen. The crown ether ring has the usual gauche and anti arrangements for the C‐C and C? O bonds.  相似文献   

19.
A BiNPs@NPCGS nanocomposite was designed for highly efficient detection of multiple heavy‐metal ions by in situ synthesis of bismuth‐nanoparticle (BiNP)‐enriched nanoporous carbon (NPS) on graphene sheet (GS). The NPCGS was prepared by pyrolysis of zeolitic imidazolate framework‐8 (ZIF‐8) nanocrystals deposited on graphene oxide and displayed a high surface area of 1251 m2 g?1 and a pore size of 3.4 nm. BiNPs were deposited on NPCGS in situ by chemical reduction of Bi3+ with NaBH4. Due to the restrictive effect of the pore/surface structure of NPCGS, the BiNPs were uniform and well dispersed on the NPCGS. The BiNPs@NPCGS showed good conductivity and high effective area, and the presence of BiNPs allowed it to act as an efficient material for anodic‐stripping voltammetric detection of heavy‐metal ions. Under optimized conditions, the BiNPs@NPCGS‐based sensor could simultaneously determine Pb2+ and Cd2+ with detection limits of 3.2 and 4.1 nM , respectively. Moreover, the proposed sensor could also differentiate Tl+ from Pb2+ and Cd2+. Owing to its advantages of simple preparation, environmental friendliness, high surface area, and fast electron‐transfer ability, BiNPs@NPCGS showed promise for practical application in sensing heavy‐metal ions.  相似文献   

20.
Reaction of ligand L H2 (4,5‐bis[carboxymethylthio]‐1,3‐dithiol‐2‐thione) with neodymium silyl‐amide (Nd[N(TMS)2]3; TMS= ‐SiMe3), in a ratio 2:1, yields a neodymium‐dithiolene‐carboxylato complex ( 1 ) (Nd( L H) L ). Similarly, reaction of 2 equivalents of L′ H2 (4,5‐bis[2′‐hydroxyethyl)thio]‐1,3‐dithiol‐2‐thione) and one equivalent of neodymium silyl‐amide (Nd[N(TMS)2]3) allowed the isolation of complex 2 , with a ligand:metal ratio of 3:2. ATR‐IR spectrum of 1 displays a broad band characteristic of an OH group showing that one carboxylate group remains protonated. Emission spectrum of complex 1 under excitation in the visible region (at 360 nm i.e. on the ligand) displayed typical emission bands of the Nd3+, showing that energy transfer from the ligand to the lanthanide was achieved (i.e. “antenna effect”). No significant quenching from the remaining –OH group was detected. In the case of complex 2 , the main emission bands characteristic of the Nd3+ ion have been observed, by excitation at 495 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号